Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/129816
DC FieldValueLanguage
dc.contributor.authorRodriguez-Almeida, Antonio J.en_US
dc.contributor.authorFabelo, Himaren_US
dc.contributor.authorSoguero-Ruiz, Cristinaen_US
dc.contributor.authorSánchez-Hernández, Rosa Maríaen_US
dc.contributor.authorWagner, Ana M.en_US
dc.contributor.authorCallicó, Gustavo M.en_US
dc.date.accessioned2024-04-09T07:18:34Z-
dc.date.available2024-04-09T07:18:34Z-
dc.date.issued2023en_US
dc.identifier.isbn9798350344196en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/129816-
dc.description.abstractNoncommunicable Diseases (NCDs), like Cardiovascular Diseases (CVD) or Diabetes Mellitus (DM) are defined as chronic conditions caused by the combination of genetic, physiological, behavioral, and environmental factors that can affect an individual's health, being a major issue for the public health system globally. Sometimes, these conditions share some of their risk factors, as occurs between CVD and DM. Current clinically validated risk calculators have been developed using different regression approaches, targeting different populations and having significant differences between their outputs and the risk factors they use to compute the risk. In this work, we present a methodology for the design of risk calculator based on Machine Learning (ML), combining the knowledge of different clinically validated cardiovascular risk calculators using transfer learning for more personalized NCD risk estimation. Besides, a hardware profiling in terms of latency and model size is performed, targeting its real-time implementation in an embedded system. Results suggest that re-training an already developed ML model with a different dataset can improve its generalization capability, being a suitable way to avoid overfitting. Moreover, profiling results shown that this type of ML-based algorithms are suitable for embedded systems implementations., having model sizes lower than 1 KB and average inference times lower than 75\ \mu\mathrm{s}.en_US
dc.languageengen_US
dc.sourceProceedings - 2023 26th Euromicro Conference on Digital System Design, DSD 2023[EISSN ], p. 103-110, (Enero 2023)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherCardiovascular Risken_US
dc.subject.otherChronic Disease Predictionen_US
dc.subject.otherDiabetes Mellitusen_US
dc.subject.otherMachine Learningen_US
dc.subject.otherRisk Calculatorsen_US
dc.subject.otherTransfer Learningen_US
dc.titleNovel Approach for AI-Based Risk Calculator Development Using Transfer Learning Suitable for Embedded Systemsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference26th Euromicro Conference on Digital System Design (DSD 2023)en_US
dc.identifier.doi10.1109/DSD60849.2023.00024en_US
dc.identifier.scopus85189135694-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57838532200-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid55207356700-
dc.contributor.authorscopusid24767870600-
dc.contributor.authorscopusid7401456520-
dc.contributor.authorscopusid56006321500-
dc.description.lastpage110en_US
dc.description.firstpage103en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.conferenceidevents152802-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate07-09-2009-
crisitem.event.eventsenddate11-09-2009-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0003-4991-7445-
crisitem.author.orcid0000-0002-7663-9308-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameSanchez Hernández, Rosa María-
crisitem.author.fullNameWägner, Anna Maria Claudia-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

49
checked on Aug 31, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.