Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/129719
DC FieldValueLanguage
dc.contributor.authorMendonça, Fábioen_US
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo-García, Antonio G.en_US
dc.date.accessioned2024-04-03T07:44:49Z-
dc.date.available2024-04-03T07:44:49Z-
dc.date.issued2023en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/129719-
dc.description.abstractThis study presents a novel approach for kernel selection based on Kullback–Leibler divergence in variational autoencoders using features generated by the convolutional encoder. The proposed methodology focuses on identifying the most relevant subset of latent variables to reduce the model’s parameters. Each latent variable is sampled from the distribution associated with a single kernel of the last encoder’s convolutional layer, resulting in an individual distribution for each kernel. Relevant features are selected from the sampled latent variables to perform kernel selection, which filters out uninformative features and, consequently, unnecessary kernels. Both the proposed filter method and the sequential feature selection (standard wrapper method) were examined for feature selection. Particularly, the filter method evaluates the Kullback–Leibler divergence between all kernels’ distributions and hypothesizes that similar kernels can be discarded as they do not convey relevant information. This hypothesis was confirmed through the experiments performed on four standard datasets, where it was observed that the number of kernels can be reduced without meaningfully affecting the performance. This analysis was based on the accuracy of the model when the selected kernels fed a probabilistic classifier and the feature-based similarity index to appraise the quality of the reconstructed images when the variational autoencoder only uses the selected kernels. Therefore, the proposed methodology guides the reduction of the number of parameters of the model, making it suitable for developing applications for resource-constrained devices.en_US
dc.languageengen_US
dc.relation.ispartofInformation (Switzerland)en_US
dc.sourceInformation (Switzerland)[EISSN 2078-2489],v. 14 (10), (Octubre 2023)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherConvolutional Neural Networken_US
dc.subject.otherFeature Selectionen_US
dc.subject.otherLatent Variablesen_US
dc.subject.otherProbabilistic Classifieren_US
dc.subject.otherVariational Autoencoderen_US
dc.titleOn the Use of Kullback–Leibler Divergence for Kernel Selection and Interpretation in Variational Autoencoders for Feature Creationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/info14100571en_US
dc.identifier.scopus85175054709-
dc.contributor.orcid0000-0002-5107-3248-
dc.contributor.orcid0000-0002-7677-0971-
dc.contributor.orcid0000-0001-7334-3993-
dc.contributor.orcid0000-0002-8512-965X-
dc.contributor.authorscopusid57195946416-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid7102398975-
dc.contributor.authorscopusid9634135600-
dc.identifier.eissn2078-2489-
dc.identifier.issue10-
dc.relation.volume14en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateOctubre 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,703
dc.description.sjrqQ2
dc.description.esciESCI
dc.description.miaricds9,5
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Appears in Collections:Artículos
Adobe PDF (4,05 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.