Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/129687
Título: | Improving Person Re-identification Through Low-Light Image Enhancement | Autores/as: | Santana, Oliverio J. Lorenzo-Navarro, Javier Freire-Obregón, David Hernández-Sosa, Daniel Castrillón-Santana, Modesto |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes | Palabras clave: | Computer Vision In The Wild Dataset Low-Light Image Enhancement Person Re-Identification Sporting Event, et al. |
Fecha de publicación: | 2024 | Proyectos: | Interaccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Social Re-identificación mUltimodal de participaNtes en competiciones dEpoRtivaS Infraestructura de Computación Científica Para Aplicaciones de Inteligencia Artificialy Simulación Numérica en Medioambientey Gestión de Energías Renovables (Iusiani-Ods) La viabilidad jurídica del documento de voluntades anticipadas |
Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 12th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2023) | Resumen: | Person re-identification (ReID) is a popular area of research in the field of computer vision. Despite the significant advancements achieved in recent years, most of the current methods rely on datasets containing subjects captured with good lighting under static conditions. ReID presents a significant challenge in real-world sporting scenarios, such as long-distance races that take place over varying lighting conditions, ranging from bright daylight to night-time. Unfortunately, increasing the exposure time on the capture devices to mitigate low-light environments is not a feasible solution, as it would result in blurry images due to the motion of the runners. This paper surveys several low-light image enhancement methods and finds that including an image pre-processing step in the ReID pipeline before extracting the distinctive body features of the subjects can lead to significant improvements in performance. | URI: | http://hdl.handle.net/10553/129687 | ISBN: | 978-3-031-54725-6 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-031-54726-3_6 | Fuente: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 14547 LNCS, p. 95-110, (Enero 2024) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.