Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/129687
Title: Improving Person Re-identification Through Low-Light Image Enhancement
Authors: Santana, Oliverio J. 
Lorenzo-Navarro, Javier 
Freire-Obregón, David 
Hernández-Sosa, Daniel 
Castrillón-Santana, Modesto 
UNESCO Clasification: 220990 Tratamiento digital. Imágenes
Keywords: Computer Vision
In The Wild Dataset
Low-Light Image Enhancement
Person Re-Identification
Sporting Event, et al
Issue Date: 2024
Project: Interaccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Social 
Re-identificación mUltimodal de participaNtes en competiciones dEpoRtivaS 
Infraestructura de Computación Científica Para Aplicaciones de Inteligencia Artificialy Simulación Numérica en Medioambientey Gestión de Energías Renovables (Iusiani-Ods) 
La viabilidad jurídica del documento de voluntades anticipadas
Journal: Lecture Notes in Computer Science 
Conference: 12th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2023)
Abstract: Person re-identification (ReID) is a popular area of research in the field of computer vision. Despite the significant advancements achieved in recent years, most of the current methods rely on datasets containing subjects captured with good lighting under static conditions. ReID presents a significant challenge in real-world sporting scenarios, such as long-distance races that take place over varying lighting conditions, ranging from bright daylight to night-time. Unfortunately, increasing the exposure time on the capture devices to mitigate low-light environments is not a feasible solution, as it would result in blurry images due to the motion of the runners. This paper surveys several low-light image enhancement methods and finds that including an image pre-processing step in the ReID pipeline before extracting the distinctive body features of the subjects can lead to significant improvements in performance.
URI: http://hdl.handle.net/10553/129687
ISBN: 978-3-031-54725-6
ISSN: 0302-9743
DOI: 10.1007/978-3-031-54726-3_6
Source: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 14547 LNCS, p. 95-110, (Enero 2024)
Appears in Collections:Actas de congresos
Show full item record

Page view(s)

72
checked on Sep 7, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.