Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129560
Campo DC Valoridioma
dc.contributor.authorMedina Ramírez, Miguel Ángelen_US
dc.contributor.authorGuerra Artal, Cayetanoen_US
dc.contributor.authorHernández Tejera, Francisco Marioen_US
dc.date.accessioned2024-03-20T14:09:57Z-
dc.date.available2024-03-20T14:09:57Z-
dc.date.issued2024en_US
dc.identifier.issn2319-4111en_US
dc.identifier.urihttp://hdl.handle.net/10553/129560-
dc.description.abstractIn task-oriented dialogue systems, the ability for users to effortlessly communicate with machines and computers through natural language stands as a critical advancement. Central to these systems is the dialogue manager, a pivotal component tasked with navigating the conversation to effectively meet user goals by selecting the most appropriate response. Traditionally, the development of sophisticated dialogue management has embraced a variety of methodologies, including rule-based systems, reinforcement learning, and supervised learning, all aimed at optimizing response selection in light of user inputs. This research casts a spotlight on the pivotal role of data quality in enhancing the performance of dialogue managers. Through a detailed examination of prevalent errors within acclaimed datasets, such as Multiwoz 2.1 and SGD, we introduce an innovative synthetic dialogue generator designed to control the introduction of errors precisely. Our comprehensive analysis underscores the critical impact of dataset imperfections, especially mislabeling, on the challenges inherent in refining dialogue management processes.en_US
dc.languageengen_US
dc.relation.ispartofInternational Journal on Natural Language Computingen_US
dc.sourceInternational Journal on Natural Language Computing (IJNLC) [ISSN 2319-4111], v. 13 (1), p. 71-88en_US
dc.subject330405 Sistemas de reconocimiento de caracteresen_US
dc.subject.otherDialog Systemsen_US
dc.subject.otherDialogue managementen_US
dc.subject.otherDataset qualityen_US
dc.subject.otherSupervised learningen_US
dc.titleImproving Dialogue Management Through Data Optimizationen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.5121/ijnlc.2024.13105en_US
dc.description.lastpage88en_US
dc.description.firstpage71en_US
dc.relation.volume13en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages18en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-6734-2257-
crisitem.author.orcid0000-0003-1381-2262-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMedina Ramírez, Miguel Ángel-
crisitem.author.fullNameGuerra Artal, Cayetano-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
Colección:Artículos
Adobe PDF (585,06 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.