Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/129252
DC FieldValueLanguage
dc.contributor.authorTravieso-González, Carlos M.-
dc.contributor.authorPiñan Roescher, Alejandro-
dc.date.accessioned2024-03-07T09:54:05Z-
dc.date.available2024-03-07T09:54:05Z-
dc.date.issued2023-
dc.identifier.isbn9783031430848-
dc.identifier.issn0302-9743-
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/129252-
dc.description.abstractThis study aims to develop and compare different AI systems for predicting solar radiation and evaluate their performance across different prediction horizons. Predicting solar radiation is of crucial importance for harnessing renewable energy sources. The models were designed to predict radiation over 6-h and 15-min horizons with the lowest possible error. The impact of prediction horizon and data acquisition frequency on prediction accuracy is discussed, emphasizing the need to consider the number of parameters and training time when comparing models. To improve the accuracy of short-term solar radiation predictions, five deep learning models, including classical, convolutional, and recurrent neural networks, were analyzed. The accuracy of the predictions was compared using two error metrics: root mean square error and mean absolute error.-
dc.languageeng-
dc.relation.ispartofLecture Notes In Computer Science (Including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics)-
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 14134 LNCS, p. 638-653, (Enero 2023)-
dc.subject3307 Tecnología electrónica-
dc.subject.otherData Acquisition Frequencies-
dc.subject.otherDeep Learning-
dc.subject.otherForecast-
dc.subject.otherPrediction Horizon-
dc.subject.otherRenewable Energy Forecasting-
dc.subject.otherSolar Irradiance Prediction-
dc.titleDeep Learning for the Analysis of Solar Radiation Prediction with Different Time Horizons and Data Acquisition Frequencies-
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.typeConferenceObject-
dc.relation.conference17th International Work-Conference on Artificial Neural Networks, IWANN 2023-
dc.identifier.doi10.1007/978-3-031-43085-5_51-
dc.identifier.scopus85174521378-
dc.identifier.isi001155313400051-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57219115631-
dc.contributor.authorscopusid57217224991-
dc.identifier.eissn1611-3349-
dc.description.lastpage653-
dc.description.firstpage638-
dc.relation.volume14134 LNCS-
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresos-
dc.contributor.daisngid31805132-
dc.contributor.daisngid55005189-
dc.description.numberofpages16-
dc.utils.revision-
dc.contributor.wosstandardWOS:Travieso-González, CM-
dc.contributor.wosstandardWOS:Piñán-Roescher, A-
dc.date.coverdateEnero 2023-
dc.identifier.conferenceidevents150445-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNamePiñan Roescher, Alejandro-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

52
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.