Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/129248
DC FieldValueLanguage
dc.contributor.authorGuisao-Betancur, Anaen_US
dc.contributor.authorGómez Déniz, Luisen_US
dc.contributor.authorMarulanda-Tobón, Alejandroen_US
dc.date.accessioned2024-03-07T09:39:33Z-
dc.date.available2024-03-07T09:39:33Z-
dc.date.issued2024en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/129248-
dc.description.abstractRemote sensing technologies have been successfully used for deforestation monitoring, and with the wide availability of satellite products from different platforms, forest monitoring applications have grown in recent years. The observed potential in these technologies motivates the development of forest mapping and monitoring tools that could also be used for neighboring applications like agriculture or land-use mapping. A literature review confirmed the research areas of interest in deforestation monitoring using synthetic aperture radar (SAR) and data fusion techniques, which guided the formulation of the method developed in this article consisting of a data preprocessing workflow for SAR (Sentinel-1) and multispectral (Sentinel-2) data and a procedure for the selection of a machine learning model for forest/nonforest segmentation evaluated in different combinations of Sentinel-1 and Sentinel-2 bands. The selected model is a random forest algorithm that uses C-band SAR dual-polarimetric bands, intensity features, and vegetation indices derived from optical/multispectral data. The selected random forest classifier’s balanced accuracies were 79–81%, and the f1-scores were 0.72–0.76 for the validation set. The results allow the obtention of yearly forest/nonforest and forest loss maps in the study area of Bajo Cauca in Colombia, a region with a documented high deforestation rate.en_US
dc.languageengen_US
dc.relation.ispartofRemote Sensingen_US
dc.sourceRemote Sensing [EISSN 2072-4292], v. 16 (1), (Enero 2024)en_US
dc.subject.otherData Fusionen_US
dc.subject.otherDeforestationen_US
dc.subject.otherForest Segmentationen_US
dc.subject.otherRemote Sensingen_US
dc.subject.otherSaren_US
dc.subject.otherSentinel-1en_US
dc.subject.otherSentinel-2en_US
dc.titleForest/Nonforest Segmentation Using Sentinel-1 and -2 Data Fusion in the Bajo Cauca Subregion in Colombiaen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/rs16010005en_US
dc.identifier.scopus85181969919-
dc.identifier.isi001140503500001-
dc.contributor.orcid0009-0002-9390-2240-
dc.contributor.orcid0000-0003-0667-2302-
dc.contributor.orcid0000-0001-7327-9231-
dc.contributor.authorscopusid57425019900-
dc.contributor.authorscopusid57238480700-
dc.contributor.authorscopusid58077431400-
dc.identifier.eissn2072-4292-
dc.identifier.issue1-
dc.relation.volume16en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid38378240-
dc.contributor.daisngid1748932-
dc.contributor.daisngid54261095-
dc.description.numberofpages23en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Guisao-Betancur, A-
dc.contributor.wosstandardWOS:Déniz, LG-
dc.contributor.wosstandardWOS:Marulanda-Tobón, A-
dc.date.coverdateEnero 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,091-
dc.description.jcr5,0-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds10,6-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-0667-2302-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameGómez Déniz, Luis-
Appears in Collections:Artículos
Adobe PDF (4,22 MB)
Show simple item record

Page view(s)

297
checked on Sep 7, 2024

Download(s)

266
checked on Sep 7, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.