Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129000
Título: Exploring biometric domain adaptation in human action recognition models for unconstrained environments
Autores/as: Freire Obregón, David Sebastián 
Barra, Paola
Castrillón-Santana, Modesto 
De Marsico, Maria
Clasificación UNESCO: 1203 Ciencia de los ordenadores
33 Ciencias tecnológicas
Palabras clave: Human action recognition
Biometrics
Transformers
Domain adaptation
Fecha de publicación: 2024
Proyectos: Interaccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Social 
Infraestructura de Computación Científica Para Aplicaciones de Inteligencia Artificialy Simulación Numérica en Medioambientey Gestión de Energías Renovables (Iusiani-Ods) 
Publicación seriada: Multimedia Tools and Applications 
Resumen: In conventional machine learning (ML), a fundamental assumption is that the training and test sets share identical feature distributions, a reasonable premise drawn from the same dataset. However, real-world scenarios often defy this assumption, as data may originate from diverse sources, causing disparities between training and test data distributions. This leads to a domain shift, where variations emerge between the source and target domains. This study delves into human action recognition (HAR) models within an unconstrained, real-world setting, scrutinizing the impact of input data variations related to contextual information and video encoding. The objective is to highlight the intricacies of model performance and interpretability in this context. Additionally, the study explores the domain adaptability of HAR models, specifically focusing on their potential for re-identifying individuals within uncontrolled environments. The experiments involve seven pre-trained backbone models and introduce a novel analytical approach by linking domain-related (HAR)and domain-unrelated (re-identification (re-ID)) tasks. Two key analyses addressing contextual information and encoding strategies reveal that maintaining the same encoding approach during training results in high task correlation while incorporating richer contextual information enhances performance. A notable outcome of this study is the comprehensive evaluation of a novel transformer-based architecture driven by a HAR backbone, which achieves a robust re-ID performance superior to state-of-the-art (SOTA). However, it faces challenges when other encoding schemes are applied, highlighting the role of the HAR classifier in performance variations.
URI: http://hdl.handle.net/10553/129000
ISSN: 1573-7721
DOI: 10.1007/s11042-024-18469-5
Fuente: Multimedia Tools and Applications [1573-7721], (2024)
Colección:Artículos
Adobe PDF (1,19 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.