Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129000
Campo DC Valoridioma
dc.contributor.authorFreire Obregón, David Sebastián-
dc.contributor.authorBarra, Paola-
dc.contributor.authorCastrillón-Santana, Modesto-
dc.contributor.authorDe Marsico, Maria-
dc.date.accessioned2024-02-20T16:07:49Z-
dc.date.available2024-02-20T16:07:49Z-
dc.date.issued2024-
dc.identifier.issn1573-7721-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/129000-
dc.description.abstractIn conventional machine learning (ML), a fundamental assumption is that the training and test sets share identical feature distributions, a reasonable premise drawn from the same dataset. However, real-world scenarios often defy this assumption, as data may originate from diverse sources, causing disparities between training and test data distributions. This leads to a domain shift, where variations emerge between the source and target domains. This study delves into human action recognition (HAR) models within an unconstrained, real-world setting, scrutinizing the impact of input data variations related to contextual information and video encoding. The objective is to highlight the intricacies of model performance and interpretability in this context. Additionally, the study explores the domain adaptability of HAR models, specifically focusing on their potential for re-identifying individuals within uncontrolled environments. The experiments involve seven pre-trained backbone models and introduce a novel analytical approach by linking domain-related (HAR)and domain-unrelated (re-identification (re-ID)) tasks. Two key analyses addressing contextual information and encoding strategies reveal that maintaining the same encoding approach during training results in high task correlation while incorporating richer contextual information enhances performance. A notable outcome of this study is the comprehensive evaluation of a novel transformer-based architecture driven by a HAR backbone, which achieves a robust re-ID performance superior to state-of-the-art (SOTA). However, it faces challenges when other encoding schemes are applied, highlighting the role of the HAR classifier in performance variations.-
dc.languageeng-
dc.relationInteraccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Social-
dc.relationInfraestructura de Computación Científica Para Aplicaciones de Inteligencia Artificialy Simulación Numérica en Medioambientey Gestión de Energías Renovables (Iusiani-Ods)-
dc.relation.ispartofMultimedia Tools and Applications-
dc.sourceMultimedia Tools and Applications [1573-7721], (2024)-
dc.subject1203 Ciencia de los ordenadores-
dc.subject33 Ciencias tecnológicas-
dc.subject.otherHuman action recognition-
dc.subject.otherBiometrics-
dc.subject.otherTransformers-
dc.subject.otherDomain adaptation-
dc.titleExploring biometric domain adaptation in human action recognition models for unconstrained environments-
dc.typeArticle-
dc.typeinfo:eu-repo/semantics/Article-
dc.rights.licenseBY-
dc.identifier.doi10.1007/s11042-024-18469-5-
dc.identifier.scopus85185440365-
dc.identifier.isi001162972300006-
dc.contributor.orcid0000-0003-2378-4277-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid23396618800-
dc.contributor.authorscopusid57205195650-
dc.contributor.authorscopusid57218418238-
dc.contributor.authorscopusid6508106114-
dc.identifier.eissn1573-7721-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngid2472434-
dc.contributor.daisngid29039518-
dc.contributor.daisngid126841-
dc.contributor.daisngid1586541-
dc.description.numberofpages33-
dc.utils.revision-
dc.contributor.wosstandardWOS:Freire-Obregón, D-
dc.contributor.wosstandardWOS:Barra, P-
dc.contributor.wosstandardWOS:Castrillón-Santana, M-
dc.contributor.wosstandardWOS:De Marsico, M-
dc.date.coverdateFebruary, 2024-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INF-
dc.description.sjr0,801-
dc.description.jcr3,9-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorCastrillón Santana, Modesto Fernando-
crisitem.project.principalinvestigatorHernández Tejera, Francisco Mario-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Colección:Artículos
Adobe PDF (1,19 MB)
Vista resumida

Visitas

84
actualizado el 29-jun-2024

Descargas

25
actualizado el 29-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.