Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128907
Campo DC Valoridioma
dc.contributor.authorCelada-Bernal, Sergioen_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.contributor.authorPérez-Acosta, Guillermoen_US
dc.contributor.authorBlanco-López, Joséen_US
dc.contributor.authorSantana-Cabrera, Lucianoen_US
dc.date.accessioned2024-02-14T12:58:08Z-
dc.date.available2024-02-14T12:58:08Z-
dc.date.issued2023en_US
dc.identifier.issn1860-949X
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/128907-
dc.description.abstractWhen a patient is admitted to the hospital, they undergo monitoring and a variety of data is collected. The continuous stream of clinical and analytical data provides a wealth of information. However, circumstances may arise where certain medical test values are not acquired. Therefore, this chapter aims to examine the medical test values obtained from ICU patients with COVID-19 and utilize regression models to predict any missing values. By applying these regression models, we can obtain predictions of the medical test values, enabling us to retrieve missing data and provide medical staff with an additional tool and more information to combat COVID-19. This study introduces a novel approach to tackle the issue of missing medical data in ICU patients. Unlike previous studies that have focused on retrieving medical values from a single test, our model enables the retrieval of values from multiple medical tests simultaneously. The study evaluated the performance of the proposed model using several metrics, including RMSE, MAPE, and MAE. Applying the proposed model yielded a prediction of retrieved medical evidence values with an RMSE of 4.81, MAPE of 0.071, and MAE of 3.26. Additionally, the article presented different scenarios in which the model demonstrated higher accuracy. The model developed in this study has the potential to be adapted and used for the diagnosis of future infectious diseases with similar characteristics to COVID-19. Providing accurate and reliable predictions of medical test values can be a valuable tool for clinicians and medical staff to make timely and informed decisions regarding patient care. Ultimately, this can lead to better management and treatment of infectious diseases such as COVID-19, which can improve patient outcomes.en_US
dc.languageengen_US
dc.relation.ispartofStudies In Computational Intelligence
dc.sourceStudies in Computational Intelligence[ISSN 1860-949X],v. 1112, p. 301-318, (Enero 2023)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherCovid-19en_US
dc.subject.otherData Recoveryen_US
dc.subject.otherIcuen_US
dc.subject.otherPatientsen_US
dc.subject.otherRegression Modelsen_US
dc.titleAnalysis and Application of Regression Models to ICU Patient Monitoringen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typeBookParten_US
dc.identifier.doi10.1007/978-3-031-42112-9_14en_US
dc.identifier.scopus85175156046-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58531706300-
dc.contributor.authorscopusid57219115631-
dc.contributor.authorscopusid36126680500-
dc.contributor.authorscopusid6506029376-
dc.contributor.authorscopusid16242725600-
dc.identifier.eissn1860-9503-
dc.description.lastpage318en_US
dc.description.firstpage301en_US
dc.relation.volume1112en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.supplement1860-949X-
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,208
dc.description.sjrqQ4
dc.description.miaricds7,7
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Capítulo de libro
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.