Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/128906
Título: | Assessment of Forest Degradation Using Multitemporal and Multisensor Very High Resolution Satellite Imagery | Autores/as: | Marcello, J. Eugenio, F. Rodriguez-Esparragon, D. Marques, F. |
Clasificación UNESCO: | 33 Ciencias tecnológicas | Palabras clave: | Defoliation Laurel Forest Planet Vegetation Indices Worldview |
Fecha de publicación: | 2023 | Publicación seriada: | International Geoscience And Remote Sensing Symposium (IGARSS) | Conferencia: | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 | Resumen: | The reliable detection of vegetation disease and plant stress are challenges in forest ecosystems. To address this problem, remote sensing existing methods of detection mostly rely on vegetation indices, however, in dense forest, the spectral saturation must be considered to select the most appropriate index. In this work, after a revision of the state of the art, a total of 20 vegetation indices were preliminary selected to perform a thorough statistical analysis with the aim to identify the disease and devitalization phenomena in a complex laurel forest. Multisensor very high resolution imagery, from the same month, with a time difference of a decade have been used. A robust methodology has been implemented to generate accurate vigor maps and to identify the forest areas that have experienced a degradation in plant health after 10 years. | URI: | http://hdl.handle.net/10553/128906 | ISBN: | 9798350320107 | ISSN: | 2153-6996 | DOI: | 10.1109/IGARSS52108.2023.10282547 | Fuente: | Igarss 2023 - 2023 IEEE International Geoscience And Remote Sensing Symposium [ISSN 2153-6996], p. 3233-3236, (2023) |
Colección: | Actas de congresos |
Visitas
62
actualizado el 15-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.