Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/128823
DC FieldValueLanguage
dc.contributor.authorOliver, JMen_US
dc.contributor.authorGallego, Pen_US
dc.contributor.authorGonzalez, AEen_US
dc.contributor.authorAvila, Pen_US
dc.contributor.authorCastro Alonso, Ayozeen_US
dc.contributor.authorGarcia-Hamilton, Den_US
dc.contributor.authorPeinado, Ren_US
dc.contributor.authorDos-Subirà, Len_US
dc.contributor.authorPijuan-Domenech, Aen_US
dc.contributor.authorRueda, Jen_US
dc.contributor.authorRodriguez-Puras, MJen_US
dc.contributor.authorGarcia-Orta, Ren_US
dc.contributor.authorMartínez Quintana, Efrénen_US
dc.contributor.authorDatino, Ten_US
dc.contributor.authorFernandez-Aviles, Fen_US
dc.contributor.authorBermejo, Jen_US
dc.date.accessioned2024-02-06T16:40:16Z-
dc.date.available2024-02-06T16:40:16Z-
dc.date.issued2021en_US
dc.identifier.issn1355-6037en_US
dc.identifier.urihttp://hdl.handle.net/10553/128823-
dc.description.abstractObjectives To develop, calibrate, test and validate a logistic regression model for accurate risk prediction of sudden cardiac death (SCD) and non-fatal sudden cardiac arrest (SCA) in adults with congenital heart disease (ACHD), based on baseline lesion-specific risk stratification and individual's characteristics, to guide primary prevention strategies. Methods We combined data from a single-centre cohort of 3311 consecutive ACHD patients (50% male) at 25-year follow-up with 71 events (53 SCD and 18 non-fatal SCA) and a multicentre case-control group with 207 cases (110 SCD and 97 non-fatal SCA) and 2287 consecutive controls (50% males). Cumulative incidences of events up to 20 years for specific lesions were determined in the prospective cohort. Risk model and its 5-year risk predictions were derived by logistic regression modelling, using separate development (18 centres: 144 cases and 1501 controls) and validation (two centres: 63 cases and 786 controls) datasets. Results According to the combined SCD/SCA cumulative 20 years incidence, a lesion-specific stratification into four clusters - very-low (<1%), low (1%-4%), moderate (4%-12%) and high (>12%) - was built. Multivariable predictors were lesion-specific cluster, young age, male sex, unexplained syncope, ischaemic heart disease, non-life threatening ventricular arrhythmias, QRS duration and ventricular systolic dysfunction or hypertrophy. The model very accurately discriminated (C-index 0.91; 95% CI 0.88 to 0.94) and calibrated (p=0.3 for observed vs expected proportions) in the validation dataset. Compared with current guidelines approach, sensitivity increases 29% with less than 1% change in specificity. Conclusions Predicting the risk of SCD/SCA in ACHD can be significantly improved using a baseline lesion-specific stratification and simple clinical variables.en_US
dc.languageengen_US
dc.relation.ispartofHearten_US
dc.sourceHeart [1355-6037], v. 107(1), p. 67-75 (Enero 2021)en_US
dc.subject32 Ciencias médicasen_US
dc.subject320501 Cardiologíaen_US
dc.subject.otherCardiac arresten_US
dc.subject.otherCongenital heart diseaseen_US
dc.subject.otherStudy designen_US
dc.subject.otherSudden cardiac deathen_US
dc.subject.otherVentricular tachycardiaen_US
dc.titlePredicting sudden cardiac death in adults with congenital heart diseaseen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1136/heartjnl-2020-316791en_US
dc.identifier.pmid32546506-
dc.identifier.scopus2-s2.0-85087144637-
dc.identifier.isiWOS:000607207100014-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage75en_US
dc.identifier.issue1-
dc.description.firstpage67en_US
dc.relation.volume107en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.description.numberofpages9en_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr2,146
dc.description.jcr7,365
dc.description.sjrqQ1
dc.description.jcrqQ1
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUSA-ONEHEALTH 3: Histología y Patología Veterinaria y Forense (Terrestre y Marina)-
crisitem.author.deptIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.deptDepartamento de Morfología-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.orcid0000-0002-2243-5449-
crisitem.author.parentorgIU de Sanidad Animal y Seguridad Alimentaria-
crisitem.author.fullNameCastro Alonso, Ayoze-
crisitem.author.fullNameMartínez Quintana, Efrén-
Appears in Collections:Artículos
Adobe PDF (1,23 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.