Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128783
Campo DC Valoridioma
dc.contributor.authorIsmail, Shahid-
dc.contributor.authorDiaz, Moises-
dc.contributor.authorCarmona Duarte, María Cristina-
dc.contributor.authorVilar, Jose Manuel-
dc.contributor.authorFerrer Ballester, Miguel Ángel-
dc.date.accessioned2024-02-03T23:23:25Z-
dc.date.available2024-02-03T23:23:25Z-
dc.date.issued2024-
dc.identifier.issn0168-1699-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/128783-
dc.description.abstractLameness is one of the costliest pathological problems affecting dairy animals. It is usually assessed by trained veterinary clinicians who observe features such as gait symmetry or gait parameters as step counts in real time. With the development of artificial intelligence, various modular systems have been proposed to minimize subjectivity in lameness assessment. However, the major limitation in their development is the unavailability of a public database, as most existing ones are either commercial or privately held. To tackle this limitation, we have introduced CowScreeningDB, a multi-sensor database which was built with data from 43 dairy cows. Cows were monitored using smart watches during their normal daily routine. The uniqueness of the database lies in its data collection environment, sampling methodology, detailed sensor information, and the applications used for data conversion and storage, which ensure transparency and replicability. This data transparency makes CowScreeningDB a valuable and objectively comparable resource for further development of techniques for lameness detection for dairy cows. In addition to publicly sharing the database, we present a machine learning technique which classifies cows as healthy or lame by using raw sensory data. To facilitate fair comparisons with state-of-the-art methods, we introduce a novel benchmark. Combining the database, the machine learning technique and the benchmark validate our major objective, which is to establish the relationship between sensor data and lameness. The developed technique reports an average accuracy of 77 % for the best case scenario and presents perspectives for further development. By introducing this framework which encompasses the database, the classification algorithm and the benchmark, we significantly reduce subjectively in lameness assessment. This contribution to lameness detection fosters innovation in the field and promotes transparent, reproducible research in the pursuit of more effective management of dairy cow lameness. Implications: Lameness detection is one of the main tasks in dairy systems, given its importance in the production ambit. However, the data used during detection is generally either held privately or sold commercially. In this study, we create a multi-sensor database (CowScreeningDB), which can be used for lameness. Because we have made the database public1 and free of charge for research purposes, it should act as a benchmark allowing to objectively compare techniques put forth to deal with lameness. We also provide details of the sampling system used, comprised of hardware and a baseline classification algorithm.-
dc.languageeng-
dc.relation.ispartofComputers and Electronics in Agriculture-
dc.sourceComputers and Electronics in Agriculture [ISSN 0168-1699], v. 216, 108500, (Enero 2024)-
dc.subject120312 Bancos de datos-
dc.subject240111 Patología animal-
dc.subject.otherCow-
dc.subject.otherDairy-
dc.subject.otherLameness-
dc.subject.otherMachine Learning-
dc.subject.otherPublic Database-
dc.subject.otherSupport Vector Machine-
dc.titleCowScreeningDB: A public benchmark database for lameness detection in dairy cows-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1016/j.compag.2023.108500-
dc.identifier.scopus85179488657-
dc.identifier.isi001300684000001-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57201735463-
dc.contributor.authorscopusid58552611900-
dc.contributor.authorscopusid57217055027-
dc.contributor.authorscopusid7005533720-
dc.contributor.authorscopusid55636321172-
dc.identifier.eissn1872-7107-
dc.relation.volume216-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages13-
dc.utils.revision-
dc.contributor.wosstandardWOS:Ismail, S-
dc.contributor.wosstandardWOS:Diaz, M-
dc.contributor.wosstandardWOS:Carmona-Duarte, C-
dc.contributor.wosstandardWOS:Vilar, JM-
dc.contributor.wosstandardWOS:Ferrer, MA-
dc.date.coverdateEnero 2024-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
dc.description.sjr1,735-
dc.description.jcr8,3-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds11,0-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUIBS: Medicina Veterinaria e Investigación Terapéutica-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-4441-6652-
crisitem.author.orcid0000-0002-2060-2274-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameCarmona Duarte, María Cristina-
crisitem.author.fullNameVilar Guereño, José Manuel-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Colección:Artículos
Adobe PDF (6,95 MB)
Vista resumida

Citas SCOPUSTM   

1
actualizado el 10-nov-2024

Visitas

42
actualizado el 16-mar-2024

Descargas

10
actualizado el 16-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.