Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128756
Título: Predicting ICU Mortality in Acute Respiratory Distress Syndrome Patients Using Machine Learning: The Predicting Outcome and STratifiCation of severity in ARDS (POSTCARDS) Study
Autores/as: Villar, J
González-Martín, JM
Hernández-González, J
Armengol, MA
Fernández, C
Martín-Rodríguez, C
Mosteiro, F
Martínez, D
Sánchez-Ballesteros, J
Ferrando, C
Domínguez-Berrot, AM
Añón, JM
Parra, L
Montiel, R
Solano, R
Robaglia, D
Rodríguez Suárez, Pedro Miguel 
Gómez-Bentolila, E
Fernández, RL
Szakmany, T
Steyerberg, EW
Slutsky, AS
Clasificación UNESCO: 32 Ciencias médicas
3201 Ciencias clínicas
Palabras clave: Acute respiratory distress syndrome
Clinical trials
ICU mortality
Lung-protective ventilation
Machine learning, et al.
Fecha de publicación: 2023
Publicación seriada: Critical Care Medicine 
Resumen: OBJECTIVES: To assess the value of machine learning approaches in the development of a multivariable model for early prediction of ICU death in patients with acute respiratory distress syndrome (ARDS). DESIGN: A development, testing, and external validation study using clinical data from four prospective, multicenter, observational cohorts. SETTING: A network of multidisciplinary ICUs. PATIENTS: A total of 1,303 patients with moderate-to-severe ARDS managed with lung-protective ventilation. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We developed and tested prediction models in 1,000 ARDS patients. We performed logistic regression analysis following variable selection by a genetic algorithm, random forest and extreme gradient boosting machine learning techniques. Potential predictors included demographics, comorbidities, ventilatory and oxygenation descriptors, and extrapulmonary organ failures. Risk modeling identified some major prognostic factors for ICU mortality, including age, cancer, immunosuppression, Pao2/Fio2, inspiratory plateau pressure, and number of extrapulmonary organ failures. Together, these characteristics contained most of the prognostic information in the first 24 hours to predict ICU mortality. Performance with machine learning methods was similar to logistic regression (area under the receiver operating characteristic curve [AUC], 0.87; 95% CI, 0.82-0.91). External validation in an independent cohort of 303 ARDS patients confirmed that the performance of the model was similar to a logistic regression model (AUC, 0.91; 95% CI, 0.87-0.94). CONCLUSIONS: Both machine learning and traditional methods lead to promising models to predict ICU death in moderate/severe ARDS patients. More research is needed to identify markers for severity beyond clinical determinants, such as demographics, comorbidities, lung mechanics, oxygenation, and extrapulmonary organ failure to guide patient management.
URI: http://hdl.handle.net/10553/128756
ISSN: 0090-3493
DOI: 10.1097/CCM.0000000000006030
Fuente: Critical Care Medicine [0090-3493], v. 51(12), p. 1638-1649 (Diciembre 2023)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

9
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

5
actualizado el 15-dic-2024

Visitas

74
actualizado el 16-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.