Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/128540
DC FieldValueLanguage
dc.contributor.authorRamos-Ospina, Manuelaen_US
dc.contributor.authorGomez, Luisen_US
dc.contributor.authorTrujillo, Carlosen_US
dc.contributor.authorMarulanda-Tobón, Alejandroen_US
dc.date.accessioned2024-01-21T20:54:40Z-
dc.date.available2024-01-21T20:54:40Z-
dc.date.issued2024en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/128540-
dc.description.abstractComputer vision is a powerful technology that has enabled solutions in various fields by analyzing visual attributes of images. One field that has taken advantage of computer vision is agricultural automation, which promotes high-quality crop production. The nutritional status of a crop is a crucial factor for determining its productivity. This status is mediated by approximately 14 chemical elements acquired by the plant, and their determination plays a pivotal role in farm management. To address the timely identification of nutritional disorders, this study focuses on the classification of three levels of phosphorus deficiencies through individual leaf analysis. The methodological steps include: (1) using different capture devices to generate a database of images composed of laboratory-grown maize plants that were induced to either total phosphorus deficiency, medium deficiency, or total nutrition; (2) processing the images with state-of-the-art transfer learning architectures (i.e., VGG16, ResNet50, GoogLeNet, DenseNet201, and MobileNetV2); and (3) evaluating the classification performance of the models using the created database. The results show that the DenseNet201 model achieves superior performance, with (Formula presented.) classification accuracy. However, the other studied architectures also demonstrate competitive performance and are considered state-of-the-art automatic leaf nutrition deficiency detection tools. The proposed method can be a starting point to fine-tune machine-vision-based solutions tailored for real-time monitoring of crop nutritional status.en_US
dc.languageengen_US
dc.relation.ispartofElectronics (Switzerland)en_US
dc.sourceElectronics (Switzerland)[EISSN 2079-9292],v. 13 (1), (Enero 2024)en_US
dc.subject.otherComputer Visionen_US
dc.subject.otherImage Classificationen_US
dc.subject.otherImage Databaseen_US
dc.subject.otherLeaf Analysisen_US
dc.subject.otherPlant Nutritionen_US
dc.subject.otherTransfer Learningen_US
dc.titleDeep Transfer Learning for Image Classification of Phosphorus Nutrition States in Individual Maize Leavesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/electronics13010016en_US
dc.identifier.scopus85181906572-
dc.identifier.isi001139241700001-
dc.contributor.orcid0000-0001-5922-535X-
dc.contributor.orcid0000-0003-0667-2302-
dc.contributor.orcid0000-0002-1007-5028-
dc.contributor.orcid0000-0001-7327-9231-
dc.contributor.authorscopusid58804865000-
dc.contributor.authorscopusid56789548300-
dc.contributor.authorscopusid57269129300-
dc.contributor.authorscopusid58077431400-
dc.identifier.eissn2079-9292-
dc.identifier.issue1-
dc.relation.volume13en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid54100518-
dc.contributor.daisngid1279108-
dc.contributor.daisngid605101-
dc.contributor.daisngid54047332-
dc.description.numberofpages18en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Ramos-Ospina, M-
dc.contributor.wosstandardWOS:Gomez, L-
dc.contributor.wosstandardWOS:Trujillo, C-
dc.contributor.wosstandardWOS:Marulanda-Tobon, A-
dc.date.coverdateEnero 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,644-
dc.description.jcr2,9-
dc.description.sjrqQ2-
dc.description.jcrqQ2-
dc.description.scieSCIE-
dc.description.miaricds10,5-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-0667-2302-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameGómez Déniz, Luis-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 17, 2024

Page view(s)

49
checked on Aug 31, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.