Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/128274
Title: | Experimental evaluation of Large Language Models for in-class learning experience customization | Authors: | Moreno Gázquez, Juan Daniel Guerra Yanez, Victor Ravelo García, Antonio Gabriel |
UNESCO Clasification: | 580107 Métodos pedagógicos 580101 Medios audiovisuales |
Keywords: | Large Language Model Motivation Personalized Learning Learning Experience |
Issue Date: | 2023 | Publisher: | Universidad de Las Palmas de Gran Canaria (ULPGC) | Conference: | X Jornadas Iberoamericanas de Innovación Educativa en el Ámbito de las TIC y las TAC (InnoEducaTIC 2023) | Abstract: | This paper explores the utilization of Large Language Models (LLMs) for personalized education in Secondary Education, focusing on motivation and personalization. It uses the GPT 3.5 model by OpenAI to generate tailored exercises and examines their impact on student motivation and academic performance. The study highlights the positive correlation between motivation and performance, emphasizing the need to consider classroom dynamics and teacher-student relationships. While LLMs enhance educational content, they should complement, not replace, the teacher’s role. The research calls for further investigation into personalization’s impact on education, considering study duration and student samples for a more robust understanding. | URI: | http://hdl.handle.net/10553/128274 | ISBN: | 978-84-09-51520-2 | Source: | Libro de Actas de las X Jornadas Iberoamericanas de Innovación Educativa en el ámbito de las TIC y las TAC, Las Palmas de Gran Canaria, 16 y 17 de noviembre de 2023, p. 69-76, (Noviembre 2023) |
Appears in Collections: | Actas de congresos |
Page view(s)
50
checked on Mar 30, 2024
Download(s)
124
checked on Mar 30, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.