Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128246
Título: Power flow traceable P2P electricity market segmentation and cost allocation
Autores/as: Lou, Chengwei
Yang, Jin
Vega Fuentes, Eduardo 
Zhou, Yue
Min, Liang
Yu, James
Meena, Nand Kishor
Clasificación UNESCO: 3306 Ingeniería y tecnología eléctricas
332201 Distribución de la energía
Palabras clave: Distributed energy resources
Dynamic power flow tracing
Loss allocation
P2P electricity market
Feed-In Tariff, et al.
Fecha de publicación: 2024
Publicación seriada: Energy 
Resumen: This study explores peer-to-peer (P2P) electricity trading, emphasizing not just the export and consumption, but also the feasible physical supply of electricity and the use of distribution network assets. Building on a transaction-oriented dynamic power flow tracing model, a novel P2P market architecture is proposed. This architecture integrates the electricity market with the power network, considering technical constraints, network losses, and asset usage. The network is segmented into potential markets using second-order cone programming (SOCP), with an optimization problem introduced for loss-allocation. This problem merges network physical analysis and variable outputs from distributed energy resources (DERs). A graph-based P2P electricity trading model is designed to determine optimal transaction cost allocation and maximize benefits for both DERs and consumers. A case study on a modified IEEE 33-node test feeder substantiates the benefits of this market structure, demonstrating increased revenues for DERs and reduced bills for consumers compared to traditional feed-in-tariffs.
URI: http://hdl.handle.net/10553/128246
ISSN: 0360-5442
DOI: 10.1016/j.energy.2023.130120
Fuente: Energy [ISSN 0360-5442], v. 290 (Marzo 2024)
Colección:Artículos
Adobe PDF (4,9 MB)
Vista completa

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 15-dic-2024

Visitas

56
actualizado el 11-may-2024

Descargas

17
actualizado el 11-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.