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A B S T R A C T

This study explores peer-to-peer (P2P) electricity trading, emphasizing not just the export and consumption,
but also the feasible physical supply of electricity and the use of distribution network assets. Building on
a transaction-oriented dynamic power flow tracing model, a novel P2P market architecture is proposed.
This architecture integrates the electricity market with the power network, considering technical constraints,
network losses, and asset usage. The network is segmented into potential markets using second-order cone
programming (SOCP), with an optimization problem introduced for loss-allocation. This problem merges
network physical analysis and variable outputs from distributed energy resources (DERs). A graph-based P2P
electricity trading model is designed to determine optimal transaction cost allocation and maximize benefits
for both DERs and consumers. A case study on a modified IEEE 33-node test feeder substantiates the benefits
of this market structure, demonstrating increased revenues for DERs and reduced bills for consumers compared
to traditional feed-in-tariffs.
1. Introduction

The Climate Change Act to achieve a low-carbon economy was
passed in the UK in 2008. Since then the reliance on fossil fuels
and carbon emissions are continuously reduced by technological de-
velopment, industrial transformation, and investment in renewable
energy, without significantly sacrificing economic development [1].
Recent initiatives are launched to facilitate renewable distributed en-
ergy resources (DERs) including allowing local generation integration,
investing in energy storage and accelerating the shift to zero-emission
vehicles/electric vehicles [2]. From a market perspective, by intro-
ducing a range of new flexible strategies, DERs are encouraged to
participate actively in newly forming market platforms, e.g. DNO Scot-
tish & Southern Electricity Networks built two new platforms a ‘‘Neutral
Market Facilitator’’ platform to register and track buyers and sellers of
flexible electricity, and a ‘‘Whole System Coordinator’’ platform that
will determine what its moment-to-moment grid needs are on 2020 [3].

✩ The work is supported by the Engineering and Physical Sciences Research Council (EPSRC, United Kingdom) in project “Street2Grid - an electricity blockchain
platform for P2P energy trading” (Reference: EP/S001778/2).
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At the same time, power network physical constraints cannot be over-
looked so that overloading at peak times can be shaved, and network
upgrade investments and operational costs can be minimized [4]. From
31 October to 12 November 2021, COP26, a critical summit for global
climate action, in Glasgow marked a step forward in global efforts to
limit warming to 1.5 degrees, global emissions by 2030 and achieve
net-zero and carbon neutrality by 2050, where flexible markets which
can encourage emission reduction will role significantly in this process
in electricity industrial sector [5].

Traditionally, distribution network operators (DNOs) set connection
char-ges for exporting and/or importing electricity. Even though now
DER owners are allowed for grid connections and receiving incentives,
their current interactions in the electricity market are only with the
grid. In addition, the price is determined in advance (so-called feed-in
tariffs (FiT)) by regulators [6] or suppliers [7]. For example, in the UK,
the FiT of wind power is 2.88 p/kWh (pence per kilowatt-hour) when
the capacity is between 100 and 1500 kW [8]. Conversely, a standard
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Nomenclature

Parameters

𝑃 𝑙𝑜𝑎𝑑
𝑖 Active power of load at node 𝑖

𝑄𝑙𝑜𝑎𝑑
𝑖 Reactive power of load at node 𝑖

𝑈𝑚𝑎𝑥 Upper limit for voltage
𝑈𝑚𝑖𝑛 Lower limit for voltage
𝑅𝑖𝑗 Branch resistance from node 𝑖 to node 𝑗
𝑋𝑖𝑗 Branch reactance from node 𝑖 to node 𝑗

Variables

𝑃𝑖 Active power injection at node 𝑖
𝑃𝐷𝐸𝑅
𝑖 Active power of DER at node 𝑖

𝑃𝑖𝑗 Branch active power vector from node 𝑖 to
node 𝑗

𝑄𝑖 Reactive power injection at node 𝑖
𝑄𝐷𝐸𝑅

𝑖 Reactive power of DER at node 𝑖
𝑄𝑖𝑗 Branch reactive power vector from node 𝑖

to node 𝑗
𝐼𝑖𝑗 Branch current vector from node 𝑖 to node

𝑗
𝑈𝑖 Voltage at node 𝑖
𝐼2,𝑖𝑗 Second-order decision variable of current

from node 𝑖 to node 𝑗
𝑈2,𝑖 Second-order decision variable of voltage

at node 𝑖
𝜂𝐷𝐸𝑅,𝑠ℎ𝑎𝑟𝑒
𝑖 The market share of DER at node 𝑖

Indices and sets

Ω𝑏 Set of all network branches

domestic electricity tariff is 17.493 p/kWh [9]. Recently, replacing FiT,
the smart export guarantee (SEG) is launched as an obligation set by
the UK government for licensed electricity suppliers to offer a tariff and
pay for small-scale low-carbon generations of electricity exported to
power grid companies, providing certain criteria are met, which came
into force on 1st January 2020 [10]. However, even with the SEG, DER
owners can only receive between 2 to 5.6 p/kWh which is decided by
suppliers as long as it is not zero [11]. Therefore, under the existing
market structure and regulations, market openness and fairness are far
from ideal.

To further stimulate DER investments for local energy systems
and general market participation, the economic profit margin between
standard energy consumption tariff rates and export FiT/SEG should
be released. Peer-to-peer (P2P) energy trading can directly link con-
sumers with producers for mutual benefits, without intermediators
such as suppliers [12]. However, P2P trading faces challenges that
require radical changes, such as the existing centrally controlled grid,
market architecture and regulations of current network connection
charge models. Also, the P2P electricity prices should be reflected in
an electricity retail market with competition openness.

The following sections explain model of P2P electricity market
structure, summarize existing research and highlight the contributions
of this paper, beyond the state-of-the-art.

1.1. Model explanation of P2P electricity market structure

Peer-to-peer (P2P) electricity markets can be organized in three
main ways: community-based markets, fully decentralized markets,
and ‘composite’ markets. Each type exhibits different structures and
approaches to energy trading.
2

Community-based P2P market. This type of market is designed for
customers and prosumers who are part of microgrids or neighbor-
hoods. They typically have common interests and goals, and transac-
tions are readily distributed by an aggregator. Various P2P trading
models are established considering different aspects such as cheating
behaviors, blockchain, and the uncertainty of photovoltaic (PV) gener-
ation. The analysis often involves optimization algorithms based on the
alternating direction method of multipliers (ADMM).

Fully decentralized P2P market. In a fully decentralized P2P market,
every participating prosumer can freely trade with others individually,
with no centralized administration. All transactions between market
participants rely on bilateral contracts. Every market participant aims
to achieve its own optimal objective. A consensus and innovation al-
gorithm is commonly used to link different participating individuals in
the market and find the global optimum based on individual optimum.

‘Composite’ market. The ‘composite’ market is a combination of
community-based and fully decentralized markets. Every single pro-
sumer can freely trade with another within a community. Following
intra-community trading, a community is represented by an aggregator
or agent to trade with other communities. This approach ensures pro-
sumers not only have fully open-trade options within their community
but also are integrated as one actor, resulting in better bargaining
power compared to individuals. Prosumers and communities join the
market in parallel in a composite market. In this type of market,
platforms have been implemented to test potential applications in real
power systems.

1.2. Research challenge in P2P electricity market based on dynamic power
flow tracing

According to previous model explanation, P2P electricity market
structures are categorized into three types [23]: community-based mar-
kets [13–16], fully decentralized markets [17–19], and ‘composite’
markets [20–22]. A comparison of these types in terms of different
participants’ combinations is summarized in Table 1. Different studies
have proposed and examined various P2P trading models [13–22].
While some focused on community-based markets [13–16], others pro-
posed fully decentralized market models [17–19]. ‘Composite’ market
structures [20–22] have also been explored, combining elements of the
two previous types.

Existing research often overlooks non-traceable transactions that fail
to reflect actual power transfers or asset usage within the physical net-
work. Conventional loss allocation, typically necessitating an additional
decomposition step [24], may overlook loss allocations, dispropor-
tionately assign them to all prosumers based on distributed energy
resource outputs, or dismiss them as ‘compensated by the main grid’
or ’included in societal costs’ [21]. This results in oversimplification
of loss allocations and unjust grouping of participants without shared
benefits.Power flow tracing techniques, which are useful in quantifying
asset usage, recognize that not all generated power is utilized [25].
Power flow tracing techniques aims to manage losses while enforc-
ing proportional sharing, deploying methodologies such as quadratic
methods [26,27], direct loss coefficient [28], and circuit theory-based
techniques [29,30]. However, within the horizon of power flow tracing
– where only physics is the determinant – the primary goal of loss
allocation is to handle losses during the application of proportional
sharing. This accounts for the division of incoming flows among the
nodal outflows in P2P trading.

In parallel, communities engaged in peer-to-peer (P2P) energy trad-
ing often face artificial segregation [13–15,21,22], which fails to take
into account the dynamic nature of shared benefit groups. This dy-
namism arises from fluctuating power flows due to inconsistent renew-
able energy outputs and diverse demand profiles. From the perspective
of a network operator, P2P energy transactions could be liable for
usage-based fees within the distribution network [31]. Furthermore,
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Table 1
Comparison of existing designs of three typical types of P2P market structure.

Paper Participants Innovation Objective Network losses Algorithm

[13] PV prosumers
Energy storage owners

Consider dishonest players Minimize social cost by energy
cooperation

Only energy storage’s loss ADMM

[14,15] Energy buildings Create a building-centric
framework/Mismatch of
prediction values and actual
values

Minimize the cost reduction ratio
distribution/Minimize social
energy cost; Clear for mutual
energy sharing

Only energy storage’s
loss/Power network without
congestion and losses

A dynamic best response
based algorithm; ADMM

[16] Prosumer microgrid A penalty mechanism for
changing energy sharing
profiles

Maximize retails profit; Minimize
prosumer expense

Transmission losses are
neglected in local area

MILP problem

[17] Individual prosumers Captures both upstream
downstream energy balance
and forward market
uncertainty

Utility-maximizing preferences for
real time contracts and forward
contracts

Losses are not explicitly
considered, and need to be
accounted for by a separate
settlement process

Bilateral contracts

[18] Microgrids with
generators, inflexible
flexible loads, and
storage devices

Achieving global coordination
to all the generators

The objective is to determine the
settings of the components

No description Consensus + innovations
algorithm; ADMM

[19] Agents of markets
participants

Fully decentralized market
with product differentiation

Distributed minimize each agent’s
expense

Losses are subject to social
contracts

Relaxed Consensus +
Innovation (RCI)

[20] PV prosumers EV Protect private information by
blockchain

Minimize value-at-risk of energy
sharing loss

The loss of energy distribution
is neglected

A relaxation method-based
algorithm/Blockchain

[21] Community prosummers
aggregator

Introduce community
aggregators

Minimize the total social energy
cost

Losses between communities
are compensated by the main
grid Losses in a community
are neglected

A privacy-guaranteed
ADMM

[22] Nanogrid A hybrid cyber–physical P2P
energy sharing framework

Maximize the self-sufficiency;
guarantee the stability of ES
queues

No description Lyapunov-based algorithm
network technical constraints can impact the feasibility of certain
trades, suggesting a need to incorporate such factors in energy trading
models [25]. Our proposed dynamic power flow tracing-based energy
transaction model [11] advances technical research. For market design,
a model incorporating this system is crucial. It guarantees precise en-
ergy loss allocation and a fair P2P energy market, dynamically adapting
to renewable energy variability and demand, marking a significant
stride in our continuous research.

The paper will present a novel approach to electricity market de-
sign and cost allocation, focusing on accurate power flow tracing and
network segmentation for distributed energy resources. While not ex-
plicitly designed within the framework of the European Union’s ‘‘Target
Model’’ for electricity markets [32], our model resonates with the key
principles of regional energy markets and market coupling. The precise
allocation of energy and losses provides a more granular insight into
market operations, especially in high DER penetration zones. Moreover,
our model’s segmentation facilitates local balancing of supply and
demand while taking into account grid constraints, which mirrors the
philosophy of market coupling. However, to completely align with the
Target Model, there is a need for incorporating methods to enable cross-
segment or cross-zone trade. Therefore, the proposed approach not only
offers valuable improvements to existing energy market models but
also sets the scene for future research aimed at developing a seamless
market model spanning from local to regional levels.

1.3. Contributions

In this paper, a P2P market architecture based on dynamic power
flow tracing is proposed. It boosts P2P engagements by a fair market
based on transparent energy tracing and allocating transmission costs.
The contributions of this study are summarized as follows:

• The potential of the P2P market with physical electricity system
operation limits is explored — here we use the ‘cocktail-layered
energy market’ as an analogy for market segmentation. Critical
3

points of the different ‘cocktail layers for market’ segmentation
are calculated by second-order cone programming. The proposed
market segmentation principle fully considers the different sce-
narios of physically power flow. Loads which are powered by the
same sources can be divided into the same community by the
proposed principle.

• The loss function - a combination of an exponential function with
a quadratic function, is designed for different types of DERs based
on various market situations in individual market sharing models.
With a fixed power factor, the percentage of DER’s loss is in
direct proportion with its output. Based on the approach proposed
in this paper, the market price of a DER should be in inverse
proportion to its output. Therefore, the output of a DER to achieve
its maximum profit is pursued with a low loss proportion which
is closely linked with the loss function in optimal power flows.

• The problem formulation is graph-based with nodes and links
uniquely defined. Every participant is an optimization node in
the graph connected by link constraints of different optimization
functions. In this way, every participant’s benefit is considered,
while only price and power flow information is shared in the link
constraints to ensure data privacy and security.

• A case study based on the IEEE 33-Node test feeder is conducted
to verify the proposed power flow traceable P2P models. In a
transparent open P2P market, (1) DER owners could maximize
their revenue meanwhile have clear information of associated
network losses (percentage share of their total output in an indi-
vidual P2P transaction); (2) consumers could benefit from lower
energy costs due to DERs’ pricing strategies for being continu-
ously competitive in this market; (3) the power supply quality
from the grid can be potentially improved because the proposed
market allows market dominance for DERs when they are located
close to the tails of the network where voltage drops tend to be a
problem.

The paper is organized as follows: Section 2 details the market
segmentation and modeling. Section 3 presents the case study with two
types of DERs (wind and PV) to prove benefit increase for every market

participant. Section 4 summarizes the findings and concludes the paper.
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Fig. 1. Market segmentation based on dynamic power flow tracing.
2. Market segmentation and modeling

Addressing the challenge of quantifying power injection from spe-
cific generators that serve loads and incur losses across lines, power
tracing becomes a crucial topic of research. Our previous study details
the innovative approach of dynamic power flow tracing [11]. The
focus of this paper is on the further application of this methodology,
specifically exploring its implications for market segmentation. Here
a novel model is proposed considering proportional sharing of energy
and losses, which adds a unique dimension to this research. The model
contributes to the growing body of knowledge in this area and demon-
strates the novel and applied aspects of this study, thereby reinforcing
the consistency and clarity of the research novelty.

2.1. Network segmentation

To integrate physical power flow tracing into the market segmen-
tation, a power network is firstly segmented with the following defini-
tions of wires and their references where applicable.

In a power network, different components play various roles. The
longest path of the network, housing most of the buses, is termed as the
‘backbone wires (cables)’. Connected to this backbone wire are ‘branch
wires for analysis’, which significantly influence the flow tracing result.
A crucial location within this configuration is the ‘reference bus’,
positioned close to the tail end of the backbone wire. This is where
a Distributed Energy Resource (DER) is typically located. The network
further divides into ‘downstream wires’, linking the reference bus to the
last bus on the tail, and ‘upstream wires’, connecting the reference bus
4

to the first intersection of the backbone wire and branch counted from
the reference bus. Finally, there are ‘excess wires’. These constitute the
remaining sections of the backbone wires, excluding the downstream
and upstream wires. They also include other branches linked to the
backbone wires but not designated for analysis. These branches are
usually short, containing a small number of buses, and thus do not
significantly impact the flow tracing result.

Considering a case with two DERs (generators) in one feeder from a
substation (Sub) in top of Fig. 1. Backbone wires include wires between
substation and the DER 2, wire A, wire B, wire C and wire D. The
wire D connects to the end bus. The position of DER 1 is used as the
reference bus to partition the network. B and C are upstream wires.
D is the downstream wire. E is a branch wire for analysis. Wire A is
an excess wire, including a branch not for analysis. For DER 1, once
loads from DER1 downstream wires are fully fed by it, surplus power
flows against the power flow from the substation. After loads on the
wire E are fed by DER 1, electricity fed by DER 2 could be in reverse
flows through the transformer. In addition, how DER 2 can feed to the
network depends on power from DER 1.

2.2. Market segmentation principle

Under this assumption, DERs located close to the tails of the net-
work have the market dominance — as naturally power flows will
follow low impedance routes. This leads to the fact that the market
segmentation fully depends on power flow tracing results. For example,
DER 1 and DER 2 shown in Fig. 1 both have the ability to cover all
loads’ needs in the network. As DER 1 is located in the tail of the



Energy 290 (2024) 130120C. Lou et al.

c
0
1
p
c
b

𝑚

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

i

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐼

w
a
r

system, DER 1 will take all loads (e.g.loads from downstream wires,
upstream wires and branch wires for analysis shown in Fig. 1) and
DER 2 only can sell its power to upper-level substations.This in fact
can encourage DERs to be installed within and towards the tails of
the network where potential voltage drop issues can be alleviated.
Conversely, with high DER penetration, voltage increase can be solved
by cutting output. DG maximum output which is automatically set by
the upper limit of voltage upper limit in following Section 2.2 Market
Segmentation Model, Eq. (2). The active power market-entry limitation
of one generator is obtained by setting the corresponding wire active
power as 0. Base on the above, ‘branch market’ is defined as customers
being fed by the substation or DERs connected to other branches, when
the local DER cannot meet load demand or there is no DER available
locally in the branch wire for analysis. For example, by setting the
active power of wire B as 0, the active power of DER 1 is its market-
entry limitation for the ‘branch market’. If DER 1 wants to get in the
‘branch market’, its active power output should be larger than the
above limit. These active power market-entry limitations are named as
‘critical points’ between different markets.

Arrow directions of A, B, C, D and E are active power flow di-
rections. ‘+’ corresponds to flows in the same direction as that radial
coming from the substation and ‘−’ corresponds to flows in the opposite
direction. ‘0’ means there is no active power flow in this wire. The
‘branch market’ situation is shown in Fig. 1 as an example, where arrow
directions of A, D, E are ‘+’. Arrow directions of B and C are ‘−’. Loads
from downstream and upstream wires are fully supplied by DER 1.
The flows through wires B (from DER 1) and A (from DER 2 and the
substation) converge to wire E. Therefore, the branch market is open
for P2P competitions. Possible market scenarios are listed in the table
of Fig. 1(d).

The markets under consideration can be categorized into two main
types, namely Market I and Market II. Market I is comprised of three
submarkets: the downstream market, the upstream market, and the
branch market. The downstream market operates in the downstream
wires, where the arrow directions of nodes A, B, C, D, and E are all
positive, indicating that loads are supplied by DER 1, DER 2, and the
substation. In contrast, the upstream market operates in the upstream
wires. Here, the arrow directions of nodes A, B, D, and E remain
positive, but node C’s direction is negative. The implication is that the
loads in the upstream market are supplied by DER 1, DER 2, and the
substation, with loads from DER 1 downstream wires being exclusively
supplied by DER 1. The branch market is a separate entity that operates
under conditions previously described.

Market II, on the other hand, is characterized by a surplus market.
This is the market that comes into play after Market I has been
accounted for. The loads in the surplus market are supplied by DER 2
and the substation. This market is designed to optimize the allocation
of surplus energy produced by DER 2 and the substation. These market
classifications offer a robust framework for optimizing the utilization
of energy resources, ensuring that demand is met efficiently across
different segments of the network.

Only one area of loads from downstream, upstream and branch can
be fed by all of DER 1, DER 2 and the substation. Therefore, only
one market of the downstream market, upstream market and branch
market can exist at one time, marked as ‘market I’. The surplus market
happens with one of the above three markets at the same time, marked
as ‘market II’. In this case, network loads are met (‘filled’) by DER 1,
DER 2 and the substation in order.

2.3. Market segmentation model

These newly defined critical points in Section 2.1 can be identified
with the minimum absolute value of specified branch active power by
means of second-order cone programming (SOCP) [33]. DERs’ outputs
are controllable variables. Critical point 1 means that DER 1 output well
5

matches loads from DER1 downstream wires. Critical point 2 means r
that DER 1 output can fulfill loads from DER1 downstream wires plus
loads from DER 1 upstream wires. Critical point 3 means that DER
1 output plus DER 2 output equal to loads from DER1 downstream
wires plus loads from DER 1 upstream wires plus loads from the branch
for analysis. DER outputs for different critical points, 𝑃𝐷𝐸𝑅,𝑐𝑝

𝑖 , can be
alculated when the value of specified branch active power is close to
, e.g. the branch are A, B or C near the bifurcation branch E or DER
, as shown in Fig. 1. An analogy of the market segmentation based on
ower flow tracing is ‘a layered cocktail’ that has a sequentially filled
haracteristic, where critical points are similar to the liquid interfaces
etween different layers in a cocktail, as shown in Fig. 1(e).

𝑖𝑛 |𝑃𝑖𝑗 | ; ∀𝑖𝑗 = 𝐴, 𝐵 𝑜𝑟𝐶 (1)

Power flow constraints:
∑

𝑖𝑘∈Ω𝑏

𝑃𝑖𝑘 =
∑

𝑖𝑗∈Ω𝑏

(𝑃𝑗𝑖 − 𝑅𝑗𝑖(𝐼𝑗𝑖)2) + 𝑃𝑖

∑

𝑖𝑘∈Ω𝑏

𝑄𝑖𝑘 =
∑

𝑖𝑗∈Ω𝑏

(𝑄𝑗𝑖 −𝑋𝑗𝑖(𝐼𝑗𝑖)2) +𝑄𝑖

𝑃𝑖 = 𝑃𝐷𝐸𝑅
𝑖 − 𝑃 𝑙𝑜𝑎𝑑

𝑖

𝑄𝑖 = 𝑄𝐷𝐸𝑅
𝑖 −𝑄𝑙𝑜𝑎𝑑

𝑖

(𝑈𝑖)2 = (𝑈𝑗 )2 − 2(𝑅𝑗𝑖𝑃𝑗𝑖 +𝑋𝑗𝑖𝑄𝑗𝑖) + (𝑅2
𝑗𝑖 +𝑋2

𝑗𝑖)(𝐼𝑗𝑖)
2

𝑈𝑚𝑖𝑛 ≤ 𝑈𝑖 ≤ 𝑈𝑚𝑎𝑥

(2)

By replacing (𝐼𝑖𝑗 )2 and (𝑈𝑖)2 with 𝐼2,𝑖𝑗 and 𝑈2,𝑖, the model of network
n the second-order cone programming is formulated as follows:
∑

𝑖𝑘∈Ω𝑏

𝑃𝑖𝑘 =
∑

𝑖𝑗∈Ω𝑏

(𝑃𝑗𝑖 − 𝑅𝑗𝑖(𝐼2,𝑗𝑖)) + 𝑃𝑖

∑

𝑖𝑘∈Ω𝑏

𝑄𝑖𝑘 =
∑

𝑖𝑗∈Ω𝑏

(𝑄𝑗𝑖 −𝑋𝑗𝑖(𝐼2,𝑗𝑖)) +𝑄𝑖

𝑃𝑖 = 𝑃𝐷𝐸𝑅
𝑖 − 𝑃 𝑙𝑜𝑎𝑑

𝑖

𝑄𝑖 = 𝑄𝐷𝐸𝑅
𝑖 −𝑄𝑙𝑜𝑎𝑑

𝑖

(𝑈2,𝑖) = (𝑈2,𝑗 ) − 2(𝑅𝑗𝑖𝑃𝑗𝑖 +𝑋𝑗𝑖𝑄𝑗𝑖) + (𝑅2
𝑗𝑖 +𝑋2

𝑗𝑖)(𝐼2,𝑗𝑖)

(𝑈𝑚𝑖𝑛)2 ≤ 𝑈2,𝑖 ≤ (𝑈𝑚𝑎𝑥)2

(3)

2,𝑖𝑗 =
(𝑃 2

𝑖𝑗 +𝑄2
𝑖𝑗 )

𝑈2,𝑖𝑗
𝑖, 𝑗 ∈ 𝐵 (4)

Eq. (4) can be further loosened and transformed into the form of
SOCP.

‖[2𝑃𝑖𝑗 2𝑄𝑖𝑗 𝐼2,𝑖𝑗 − 𝑈2,𝑖𝑗 ]𝑇 ‖2 ≤ 𝐼2,𝑖𝑗 + 𝑈2,𝑖𝑗 (5)

The generation share that a DER can participate within a market is
calculated by the following equation:

𝜂𝐷𝐸𝑅,𝑠ℎ𝑎𝑟𝑒
𝑖 =

𝑃𝐷𝐸𝑅
𝑖 − 𝑃𝐷𝐸𝑅,𝑐𝑝

𝑖

𝑃𝐷𝐸𝑅
𝑖

(6)

where 𝜂𝐷𝐸𝑅,𝑠ℎ𝑎𝑟𝑒
𝑖 is the market share of DER at node 𝑖.

2.4. Individual market loss allocation model

The loss function is defined as the combination of an exponential
function and a quadratic function. This definition enables limiting the
error within the range of 10−3 [34]:

𝑓 𝑙𝑜𝑠𝑠(𝑥) = 𝑚 ⋅ 𝑙𝑛(𝑥) + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (7)

here 𝑓 𝑙𝑜𝑠𝑠 represents (1 − 𝑃𝐷𝐸𝑅𝑙𝑜𝑠𝑠
𝑖 ∕𝑃𝐷𝐸𝑅

𝑖 ), loads percentage of DER
ctive power output (excluding losses) at node 𝑖; 𝑃𝐷𝐸𝑅𝑙𝑜𝑠𝑠

𝑖 ∕𝑃𝐷𝐸𝑅
𝑖 rep-

esents network loss percentage of one DER active power output ; 𝑥
𝐷𝐸𝑅 ∑ 𝑙𝑜𝑎𝑑
epresents 𝑃𝑖 ∕ 𝑃 , one DER active power percentage of whole
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network loads. Therefore, 𝑃𝐷𝐸𝑅𝑛𝑜𝑙𝑜𝑠𝑠
𝑖 is active power output from DER

except for its accounts for the losses

𝑃𝐷𝐸𝑅𝑛𝑜𝑙𝑜𝑠𝑠
𝑖 = 𝑓 𝑙𝑜𝑠𝑠(

𝑃𝐷𝐸𝑅
𝑖

∑

𝑃 𝑙𝑜𝑎𝑑 ) ⋅ 𝑃
𝐷𝐸𝑅
𝑖 (8)

When one DER active power percentage (𝑃𝐷𝐸𝑅∕
∑

𝑃 𝑙𝑜𝑎𝑑) increases,
he load area transferred by this DER increases. Therefore, an DER
ccounts for more losses in the network as its power is transferred
o the loads further than before (𝑃𝐷𝐸𝑅𝑙𝑜𝑠𝑠

𝑖 ∕𝑃𝐷𝐸𝑅
𝑖 increases and 𝑓 𝑙𝑜𝑠𝑠

ecreases).

.5. Individual DER cost and income model

The cost function is designed as follows:

𝑜𝑠𝑡𝐷𝐸𝑅
𝑖 = 𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑 − 𝛼𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑 ⋅

𝑃𝐷𝐸𝑅
𝑖

𝑃𝐷𝐸𝑅,𝑚𝑎𝑥
𝑖

0 < 𝛼 ≤ 0.5 (9)

− 𝛼 ⋅ 𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑

𝑃𝐷𝐸𝑅,𝑚𝑎𝑥
𝑖

< 0 (10)

𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑 − 2𝛼 ⋅
𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑 ⋅ 𝑃𝐷𝐸𝑅

𝑖

𝑃𝐷𝐸𝑅,𝑚𝑎𝑥
𝑖

≥ 0 (11)

where the DER income function is 𝐼𝑛𝑐𝑜𝑚𝑒𝐷𝐸𝑅 = 𝐶𝑜𝑠𝑡𝐷𝐸𝑅 ⋅ 𝑃𝐷𝐸𝑅,
𝐷𝐸𝑅,𝑚𝑎𝑥
𝑖 is the maximum active power of DER at node 𝑖. By setting
he cost factor 𝛼 meeting, the derivative of cost function is less than
ero, as expressed in Eq. (10) and the income function is not negative,
s expressed in Eq. (11). It satisfies that the total income increases when
ERs increase outputs until their maximum capacities, even though
arginal cost decreases. This motivates DER to increase their DER

utputs whilst decreasing customer electricity purchase cost.

.6. Model implementation

The models described in the previous section within the P2P energy
arket are implemented with OptiGraph (a general graph-based mod-

ling abstraction for optimization), built with a set of OptiNodes (each
mbedding an optimization model with its local variables, constraints,
bjective function and data) and a set of OptiEdges (each embedding
set of linking constraints) [35]. The OptiGraph as an undirected

ypergraph contains the optimization model of interest. The OptiEdges
re hyperedges that connect two or more OptiNodes. Modeling details
re further presented in Appendix.

.6.1. OptiNode model for 𝑙𝑜𝑎𝑑𝑎
Here 𝑎 represents a set of loads in market I and market II. The 𝑙𝑜𝑎𝑑𝑎’s

bjective is to minimize its electricity purchase cost.

in 𝐶𝑜𝑠𝑡𝐷𝐸𝑅
𝑖 ⋅ 𝑃𝐷𝐸𝑅−𝑙𝑜𝑎𝑑𝑎

𝑖 + 𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑 ⋅ 𝑃𝐺𝑟𝑖𝑑−𝑙𝑜𝑎𝑑𝑎

s.t. 𝑃𝐷𝐸𝑅−𝑙𝑜𝑎𝑑𝑎
𝑖 + 𝑃𝐺𝑖𝑟𝑑−𝑙𝑜𝑎𝑑𝑎 = 𝑃 𝑙𝑜𝑎𝑑𝑎

𝑖

𝑃𝐷𝐸𝑅−𝑙𝑜𝑎𝑑𝑎
𝑖 , 𝑃𝐺𝑖𝑟𝑑−𝑙𝑜𝑎𝑑𝑎 ≥ 0

(12)

here 𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑 is the electricity cost from the substation; 𝑃𝐷𝐸𝑅−𝑙𝑜𝑎𝑑𝑎
𝑖 is

he active power from DER at node 𝑖 to 𝑙𝑜𝑎𝑑𝑎; 𝑃
𝐺𝑖𝑟𝑑−𝑙𝑜𝑎𝑑𝑎
𝑖 is the active

ower from substation to 𝑙𝑜𝑎𝑑𝑎.

.6.2. OptiNode model for DER
Each DER’s objective is to maximize its total income.

ax 𝐶𝑜𝑠𝑡𝐷𝐸𝑅𝑖 ⋅ 𝑃𝐷𝐸𝑅𝑛𝑜𝑙𝑜𝑠𝑠
𝑖

s.t. 𝐶𝑜𝑠𝑡𝐷𝐸𝑅
𝑖 ≤ 𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑

𝑃𝐷𝐸𝑅
𝑖 ≤ 𝑃𝐷𝐸𝑅,𝑚𝑎𝑥

𝑖

𝐶𝑜𝑠𝑡𝐷𝐸𝑅
𝑖 = 𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑 − 𝛼𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑 ⋅

𝑃𝐷𝐸𝑅
𝑖

𝑃𝐷𝐸𝑅,𝑚𝑎𝑥
𝑖

(13)
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0 < 𝛼𝑖 ≤ 0.5, 𝑎𝑛𝑑, (8) a
.6.3. OptiEdges for linking constraints
Linking constraints include cost linking constraints and power link-

ng constraints.
Cost linking equations: The cost provided by DERs equals to the cost

eceived by customers.
Power linking equations: DER outputs in markets equals to all loads

n markets.
𝐷𝐸𝑅𝑛𝑜𝑙𝑜𝑠𝑠
𝑖 ⋅ 𝜂𝐷𝐸𝑅,𝑠ℎ𝑎𝑟𝑒

𝑖 =
∑

𝑃𝐷𝐸𝑅−𝑙𝑜𝑎𝑑𝑎
𝑖 (14)

. Case study

The proposed P2P model and market segmentation algorithms are
mplemented and validated in this section. The detailed procedure of
mplementing the proposed P2P market model and algorithms is shown
n Fig. 2, based on Python and Julia [36].

The segmentation of the market is a vital step in the overall process.
ritical points for different markets are accurately calculated using
econd-order cone programming (SOCP), implemented via the JuMP
ackage in Julia [37]. Once the markets are defined, the subsequent
ocus shifts to defining Market I and Market II. This process leverages
he power flow tracing model, as described in earlier work [11]. The
ower flow calculations are facilitated by the Pandapower Python
ackage [38], which provides reliable and efficient power flow results.
ith the markets defined and the power flow calculated, attention

urns to determining the loss functions. These are modeled using the
ython package, scipy.optimize.curve_fit [39], known for its robust
urve fitting abilities. The error tolerance is set at 10−3, ensuring ac-
urate and reliable results. Finally, peer-to-peer energy market trading
s addressed, relying on a model based on graph theory. The imple-
entation of this complex model is realized using the Plasmo Julia
ackage [35]. This systematic approach ensures an efficient and fair
eer-to-peer energy market, enhancing the benefits for both distributed
nergy resources and consumers.

The computing environment used to simulate the proposed model
s Intel i7-10850H 2.7 GHz CPU, 32 GBRAM, Linux (Ubuntu). The IEEE
3-node test feeder, a 12.66 kV radial distribution system is used for
his case study. The original circuit is modified by installing two DERs:
2 MVA wind power turbine (DER 1) at bus 14 and a 3 MVA solar

hoto-voltaic (PV) plant (DER 2) at bus 20. The power factor of DER 1
nd DER 2 are 0.62. The topology of the circuit is shown in Fig. 3(a).
he profiles of DER 1, DER 2 and all the loads are shown in Fig. 3(b).

.1. Market segmentation result

The backbone wires of the IEEE 33-node test feeder are from buses
to 18 which is the longest path of the network with 18 buses. The bus
4 where the DER 1 locates is the reference bus. Considering all DERs
re under maximum output condition, four load areas are categorized
s follows: DER 1 downstream wires (from buses 15 to 18), DER 1
pstream wires(from buses 7 to 13), bus 6 with its branch (bus 6 and
ranch wires for analysis from buses 26 to 33), DER 2 branch wires
from buses 19 to 22), and the excess wires (the rest backbone wires
rom buses 1 to 6, and branch wires not for analysis from buses 23 to
4), as shown in Fig. 3(a) and Table 2. Colors are used to visualize
ifferent markets in 24 h.

Table 2 shows the potential for flexible utilization of surplus gen-
ration, where DERs have the freedom to sell a portion of their ex-
ess power in P2P transactions, guided by power flow tracing results.
his implies that DERs can participate in bilateral transactions with
ther market participants, conforming to a transaction-oriented dy-
amic power flow tracing model. Thus, both customers and DERs can
stablish bilateral contracts, in alignment with the quantification of
ower contributions from specific generators that service loads and
nduce losses across transmission lines. Furthermore, this form of cost
llocation is primarily utilized in an ex ante fashion, serving as a
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Fig. 2. Flow chart of the implementation process with the proposed P2P market model,
functions and algorithms.

Fig. 3. Test network with IEEE 33-node test network topology and profiles.
7

predictive tool. However, its potential extends to ex post applications
as well, where it could be employed for retrospective analysis and
adjustment of transactions, thereby ensuring a more accurate and fair
allocation of costs based on actual power flows and usage. This dual
utility enhances the robustness and flexibility of our energy market
design framework, enabling it to adapt to the dynamic nature of power
generation and consumption.

DER 1 downstream market (including DER 1 downstream wires):
From hours 1 to 3, loads are supplied by both substation and DER 1.
From hours 8 to 10, loads are supplied by the substation, DER 1 and
DER 2.

DER 1 upstream market (including DER 1 upstream wires): From
hours 11 to 13, loads are supplied by substation, DER 1 and DER 2.
From hours 18 to 24, loads are supplied by substation and DER 1.

Branch market connected with bus 6 (including bus 6 with its branch
wires): From hours 4 to 7, loads are supplied by both the substation
and DER 1. From hours 14 to 17, loads are supplied by the substation,
DER 1, and DER 2.

Surplus market : In hours 6, 7, 18, and 19, there are sporadic markets
between DER 2 and substation. These markets are independent of the
markets between DER 1 and substation. Therefore, these markets can
be ignored considering DER 2 output is small. However, between hour
8 and hour 17, the surplus market at least includes all loads from
excess buses and can influence market I. Therefore, the surplus market
is considered during this period.

3.2. Individual market sharing result

Active power market-entry limitations of DERs are shown in Ta-
ble 3. By setting 𝑃𝑖𝑗 𝑖=13

𝑗=14
, 𝑃𝑖𝑗 𝑖=6

𝑗=7
, 𝑃𝑖𝑗 𝑖=5

𝑗=6
as 0, active power market-entry

upper limitations of the downstream generator can be obtained as
10.52%, 30.04% and 58.44%. 3.23% means DER 1 located in bus 14
can meet the demand of the local load. Based on the DER 1 market 𝑃𝑖𝑗 =
0 condition, by setting 𝑃𝑖𝑗 𝑖=1

𝑗=2
as 0, upper limitations of the downstream

generator for different markets can be obtained as 110.23%, 96.99%
and 74.95%. 10.24% means DER 2 located in bus 20 can meet the
demand of loads from the branch (bus 19 to bus 22). Different loss
functions for different DERs in different market situations are shown
in Fig. 4. Fitted loss functions’ parameters are shown in Table 4. All
parameters are defined in Eq. (7) and they are sampling and calculated
by the Python package scipy.opt-imize.curve_fit [39].

For the DER 1 power generator, in the test system, the loss function
curve can be divided into three parts: constant (zero deceleration),
increasing deceleration, constant deceleration, corresponding to three
market situations: DER 1 downstream, DER 1 upstream, and Branch
market. For DER 2 in the test system, when it can get into more
markets, it shares more losses even with the same output because it
can transfer power to loads farther away. Therefore, the slope of the
loss function of DER 2 can be sorted from the largest to the smallest
as: DER 1 downstream > DER 1 upstream > Branch market connected
with bus 6.

3.3. Market costing results

3.3.1. Individual costs and DER outputs
The cost function is shown in Fig. 5, with an assumption that

𝛼𝐷𝐸𝑅1 = 𝛼𝐷𝐸𝑅2 = 0.5. When DER 1 reaches its maximum output of
1405.14 kW or DER 2 reaches its maximum output of 2600.50 kW,
they can provide energy at a its electricity purchase cost of 8.747
p/kWh (pence per kilowatt-hour), half of the standard electricity tariff
of 17.493 p/kWh [40] (accessed Jul. 15, 2020). However, the its
electricity purchase cost of energy provided by DERs, at 8.747 p/kWh,
is higher than the feed-in tariff (2.28 p/kWh for DER 1 and 0.33 p/kWh
for DER 2 [8]). As the output from the DERs increases, the unit cost of
energy from DERs decreases, but their total income increases.
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Table 2
24-h power flow tracing results for the IEEE 33-node test network.
Table 3
Active power market-entry limitations of DERs.

DER 1
downstream

DER 1
upstream

Branch market
connected with
bus 6

Market bus 15 to 18 7 to 13 26 to 33
and 6

𝑃𝑖𝑗 = 0
(DER 1 market)

i = 13, j = 14 i = 6, j = 7 i = 5, j = 6

𝑃𝐷𝐸𝑅1
∑

𝑃𝑙𝑜𝑎𝑑
3.23% ∼
10.52%

10.52% ∼
30.04%

30.04% ∼
58.44%

Power factor
(DER 1)

0.85 0.85 0.97

Voltage at DER 1 0.95 1 1.04

𝑃𝑖𝑗 = 0
(DER 2 market)

i = 1, j = 2 i = 1, j = 2 i = 1, j = 2

𝑃𝐷𝐸𝑅2
∑

𝑃𝑙𝑜𝑎𝑑
10.24% ∼
110.23%

10.24% ∼
96.99%

10.24% ∼
74.95%

Power factor
(DER 2)

0.84 0.85 1

Voltage at DER 2 1.07 1.05 1.03

The cost allocation for different consumers and the resulting outputs
from the DERs are detailed in Table 5. Market I is one of the three
markets (downstream of DER 1, upstream of DER 1, and the Branch
market connected with bus 6). It comprises buses supplied by DER
8

1 and the substation constantly, and includes buses supplied by DER
2 between the 8th and 17th hours. Market II is the surplus market,
comprising only buses supplied by DER 2 and the substation, excluding
DER 1, between the 8th and 17th hours. The cost for loads in a market
can be calculated as ∑

(𝑃𝐷𝐸𝑅 ∗ 𝐶𝑜𝑠𝑡𝐷𝐸𝑅 + 𝑃 𝑆𝑢𝑏 ∗ 𝐶𝑜𝑠𝑡𝑆𝑢𝑏)∕𝑃 𝑙𝑜𝑎𝑑 . For
other loads not included in a market, their tariffs are determined by
their respective electricity sources.

As a DER increases its output, its per unit cost decreases, but the
losses it must share increase. From the 1st to 7th hour and 18th to 24th
hour, the cost in Market I is higher than the cost from DER 1 and lower
than 17.493 p/kWh. The average output portions in Market I from the
8th to 10th hours are 𝑃𝐷𝐸𝑅 1 ∶ 𝑃𝐷𝐸𝑅 2 ∶ 𝑃 𝑆𝑢𝑏 = 33% ∶ 32% ∶ 34%, and
from the 11th to 13th hours 𝑃𝐷𝐸𝑅 1 ∶ 𝑃𝐷𝐸𝑅 2 ∶ 𝑃 𝑆𝑢𝑏 = 58% ∶ 32% ∶
10%. From the 8th to 13th hours, the Market I cost lies between the
costs from DER 1 and DER 2.

Meanwhile, the cost in Market I is lower than in Market II. The
average output portion in Market I from the 14th to 18th hours is
𝑃𝐷𝐸𝑅 1 ∶ 𝑃𝐷𝐸𝑅 2 ∶ 𝑃 𝑆𝑢𝑏 = 14% ∶ 33% ∶ 53%. From the 14th to 18th
hours, DER 1’s exclusive market is larger than in the previous two time
periods, hence there is insufficient DER 1 power to supply the branch
market connected with bus 6 (below 15%). From the 8th to 17th hours,
the cost in Market II is higher than the cost from DER 2 and lower than
17.493 p/kWh.
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Fig. 4. Loss functions of DERs in different markets.
Table 4
Loss function parameters.

Loss index of DER 1 Loss index of DER 2

DER 1
downstream
market

DER 1 upstream
market

Branch market
connected with bus 6

DER 1
downstream
market

DER 1 upstream
market

Branch market
connected with bus 6

m 0 0 0 −0.0361 −0.0464 −0.0356
a 0 −0.4370 0 −0.0510 −0.0492 0
b 0 0.0937 −0.1376 −0.0312 0.0800 0.0019
c 0.9975 0.9927 1.0220 0.9162 0.8813 0.9100
Errora 1.63E−04 2.71E−04 6.04E−04 3.92E−04 4.10E−04 8.67E−04

a Standard error of the regression.
3.3.2. Customer total energy costs
Collectively, consumers can save £1736.44, ∑

(𝑃𝐷𝐸𝑅 − 𝑃𝐷𝐸𝑅𝑙𝑜𝑠𝑠 ×
(𝐶𝑜𝑠𝑡𝑆𝑢𝑏 − 𝐶𝑜𝑠𝑡𝐷𝐸𝑅) ) for a span of 24 h, as shown in Eq. (15) and
outlined in Table 5. DER 1 and DER 2 can increase their revenue by
£1264.58 and £1910.79 respectively, ∑

𝑃𝐷𝐸𝑅 × (𝐶𝑜𝑠𝑡𝐷𝐸𝑅 −
𝐶𝑜𝑠𝑡𝑓𝑒𝑒𝑑−𝑖𝑛 𝑡𝑎𝑟𝑖𝑓𝑓 ). The calculation process is analogous to the savings
9

calculation for consumers, and is omitted here to avoid repetition.
Details about the savings made by consumers and increased revenues
of the DERs are shown in Table 6. Broadly, when consumers consume
more energy from the DERs, they save more money, both in aggregate
and per unit. Conversely, when DERs generate more energy, their total
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Table 5
P2P electricity purchase cost and DER output results.

Time h DER 1 cost p/kWh DER 1 output kWh DER 1 loss kWh DER 2 cost p/kWh DER 2 output kWh DER 2 loss kWh Market I p/kWh Market II p/kWh

1 16.75 119.18 0.30 – – – 16.95 –
2 17.07 68.00 0.17 – – – 17.39 –
3 16.84 104.95 0.26 – – – 17.10 –
4 13.22 686.99 30.90 – – – 14.61 –
5 13.12 702.45 27.58 – – – 15.20 –
6 11.90 899.17 40.95 – – – 13.63 –
7 13.09 706.97 15.62 – – – 17.22 –
8 16.42 172.05 0.43 14.35 934.92 53.74 16.17 16.68
9 16.16 214.79 0.53 11.60 1752.47 150.78 15.16 14.87
10 16.33 187.57 0.47 10.02 2221.91 227.05 14.38 13.40
11 12.87 742.79 4.48 9.18 2471.29 342.66 10.77 11.05
12 13.16 696.32 3.62 8.75 2600.50 324.45 10.06 10.02
13 11.81 913.32 10.13 8.86 2566.33 307.03 9.74 8.86
14 8.75 1405.14 42.73 9.48 2383.84 181.07 9.52 9.60
15 9.30 1315.47 36.33 12.84 1382.91 78.09 13.96 15.09
16 10.70 1091.33 22.24 15.90 473.95 8.99 17.21 17.35
17 11.45 970.41 20.80 16.49 297.91 2.21 17.19 17.46
18 15.69 289.05 0.68 – – – 17.41 –
19 15.95 248.55 0.62 – – – 17.37 –
20 15.71 285.82 1.31 – – – 17.05 –
21 16.53 154.55 0.35 – – – 17.49 –
22 16.02 236.12 0.89 – – – 17.20 –
23 15.50 320.60 2.79 – – – 16.69 –
24 15.38 338.73 3.56 – – – 16.53 –

p/kWh - British pence per kilowatt-hour.
Table 6
Consumers’ cost reductions and DERs’ income increases.

Time/h Average £ per hour p per kWh

1 to 3 4 to 7 8 to 10 11 to 13 14 to 17 18 to 24 24 h 1 to 3 4 to 7 8 to 10 11 to 13 14 to 17 18 to 24 24 h

DER 1 downstream 0.62 8.90 5.75 18.88 28.32 1.35 9.70 0.64 4.68 2.33 4.88 7.51 1.66 3.43
DER 1 upstream 0.00 15.64 14.74 38.48 49.74 2.88 18.27 0.00 4.68 2.63 5.66 7.51 1.66 3.48
Branch connected with bus 6 0.00 9.46 21.09 52.28 28.94 0.00 15.57 0.00 2.19 2.63 8.02 3.17 0.00 2.22
Excess buses 0.00 0.00 35.73 88.56 33.41 0.00 21.10 0.00 0.00 2.63 8.02 2.76 0.00 1.79
DER 2 branch 0.00 0.00 14.06 30.60 9.98 0.00 7.25 0.00 0.00 5.68 8.56 3.96 0.00 2.44
Sum 0.62 34.01 91.38 228.81 150.39 4.23 71.89 0.64 11.55 15.91 35.13 24.91 3.32 13.37

DER 1 increased income 14.15 74.89 26.75 79.72 88.07 34.49 50.86 14.54 10.00 13.97 10.17 7.37 13.48 11.10
DER 2 increased income 0.00 0.00 165.30 189.84 121.00 0.00 64.56 0.00 0.00 10.10 7.46 10.66 0.00 3.97
Sum 14.15 74.89 192.05 269.55 209.07 34.49 115.42 14.54 10.00 24.07 17.63 18.03 13.48 15.07
revenue increases, but their per-unit revenue decreases.
24 h
∑

𝑡
(𝑃𝐷𝐸𝑅 − 𝑃𝐷𝐸𝑅𝑙𝑜𝑠𝑠 ) × (𝐶𝑜𝑠𝑡𝑆𝑢𝑏 − 𝐶𝑜𝑠𝑡𝐷𝐸𝑅)

=(119.18 kWh − 0.30 kWh) × (17.49 p∕kWh − 16.75 p∕kWh) +⋯

+ (338.73 kWh − 3.56 kWh) × (17.49 p∕kWh − 15.38 p∕kWh)

=1736.44

(15)

Time analysis for the market: From hours 11 to 13, for customers
rom the branch connected with bus 6, excess buses and DER 2 branch,
hey can save the most money (52.28, 88.56 and 30.60 average £ per
our & 8.02, 8.02 and 8.56 p/kWh) both in total and per unit. This
s because the combined output from the DERs is highest during this
eriod. But from hours 14 to 17, for customers from DER 1 downstream
nd DER 1 upstream, they can save the most (28.32 and 49.74 average
per hour & 7.51 and 7.51 p/kWh) both in total and per unit. This

s because the total output from DER 1 is highest during this period,
nd customers from DER 1 downstream and DER 1 upstream are
redominantly supplied by DER 1.
Spatial analysis for the market: Customers from the excess buses can

save the largest sum of money (21.10 £ per hour) over 24 h because
their total demand is highest. Customers from DER 1 upstream can save
the most money per unit (3.48 p/kWh) over 24 h. This is primarily
because they are supplied with energy from DERs most of the time,
and from hours 11 to 13, they can get a better cost rate than customers
from DER 1 upstream, as part of their energy is supplied by DER 2.
10
These results and analyses demonstrate that a P2P market based on
power flow tracing can unlock potential economic values within local
energy systems. Network losses can be distinctly traced to DERs, and
market segmentation links the trading with the usage of the physical
power networks. This concept paves the way for future work on grid
services provided by prosumers. For instance, DERs would assume
P2P power supply responsibility for the reliability of the electricity to
customers they trade with. Both DERs and consumers are incentivized
to actively participate in trading, with improved benefits from the P2P
market designed in this paper.

3.4. Robustness check for the loss function and the coefficient alpha

The proposed model integrates technical and economic aspects,
interlacing network physical analysis with variable outputs from DERs.
This holistic perspective necessitates accuracy and robustness in every
component of the model. The loss function directly affects the calcula-
tion of network losses, a key constraint that shapes the viable physical
supply of electricity and asset usage. On the other hand, the coefficient
𝛼 determines the cost allocation strategy in the trading model. It plays
a critical role in striking a balance between the incentive for DERs to
increase their outputs and ensuring a reasonable cost for consumers.
Given these central roles, any sensitivity or variance in these two
parameters could have far-reaching implications on the overall perfor-
mance and validity of the market architecture. Hence, it is crucial to
investigate their robustness thoroughly, to ensure that findings are not

only theoretically sound, but also practically applicable in optimizing
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Fig. 5. Costs and total income functions of DER 1 and DER 2.

transaction costs and maximizing benefits for all participants in the P2P
electricity market.

A robustness check of the loss function was conducted. This check
involved evaluating the loss function using alternative settings to test
the impact of different functional forms on the model’s outcomes. The
original form of our loss function is defined as 𝑓 𝑙𝑜𝑠𝑠(𝑥) = 𝑚 ⋅ 𝑙𝑛(𝑥)+𝑎𝑥2+
𝑏𝑥 + 𝑐.

Three distinct loss functions were evaluated during the robustness
checks. Function I, defined as 𝑓 𝑙𝑜𝑠𝑠(𝑥) = 𝑚 ⋅ 𝑙𝑛(𝑥), was assessed to mea-
sure the effect of logarithmic scaling on the ratio of DER active power
output to the total network load. Function II, which is a quadratic
polynomial expressed as 𝑓 𝑙𝑜𝑠𝑠(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, was analyzed to
understand the impact of quadratic relationships among the variables.
Finally, Function III, a higher-order polynomial given as 𝑓 𝑙𝑜𝑠𝑠(𝑥) =
𝑑 ⋅ 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐, was explored to ascertain the model’s sensitivity
to cubic terms that can encapsulate complex, nonlinear relationships,
potentially improving model accuracy.

The robustness check for the loss function highlights the importance
of the choice of function form on loss allocation calculations, and
consequently, on the distribution of active DER power output. As
illustrated in Table 7, we utilize the loss indexes of DER 2 in DER 1’s
upstream market as test cases for verification. The outcomes of these
robustness evaluations provide substantial insights and will be detailed
in the forthcoming sections. Notably, the original function offered a
balanced depiction of the inherent dynamics, while maintaining an
acceptable error range of 4.10 × 10−4. This level of precision is not
equally maintained in the alternative models, with Function I, Function
II, and Function III exhibiting standard errors of 5.63×10−1, 2.64×10−3,
and 1.38 × 10−3 respectively.

In delving into the specifics of the function forms, the original
function, provides a unique perspective. The parameters 𝑎, 𝑏, and 𝑐
define the quadratic polynomial component and have estimated values
of −0.0492, 0.0800, and 0.8813 respectively. The weight of the natural
logarithmic term, represented by parameter 𝑚 is −0.0464. The balanced
weights of these parameters manifest in the curve’s shape and position,
which closely mirrors the observed data. In contrast, Function III,
carries a much smaller weight of the 𝑥3 term (parameter 𝑑 = 0.0117).
Coupled with the lower weights of the quadratic and linear terms (𝑎
= 0.0190, 𝑏 = 0.0092), the higher standard error (0.0013) suggests a
less accurate depiction of the underlying phenomena. Ultimately, the
balanced weights of the parameters in the original function offer a more
accurate and robust representation of the observed data.

In assessing the robustness of 𝛼, we conducted an extensive explo-
ration on the influence of equidistant sampling within the range of
(0, 1.0]. This model, defined by electricity purchase cost from DER 𝑖
11
as shown in Eq. (9), is dependent on 𝛼 for calculating the electricity
purchase cost and subsequently the income derived from DERs.

When 𝛼 < 0.5, the discount the customer receives is relatively small.
As a result, the cost the customer pays to DER 𝑖 is higher. While this
could be seen as advantageous for the DER as it receives higher income
per unit hence willing to have maximum output, as shown in Fig. 6(a)
and (b). However, when 𝛼 is close to 0, it means that the discount the
customers receive is negligible. In other words, the per-unit cost that
customers have to pay for energy from the DER, 𝐶𝑜𝑠𝑡𝐷𝐸𝑅

𝑖 , is nearly the
same as the cost of energy from the grid, 𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑 . From the customers’
perspective, this might not provide much incentive to buy energy from
the DER, as the cost is almost the same as the grid price but potentially
with added complexities or uncertainties related to DER supply. This
lack of incentive might reduce the demand for energy from local DERs.

When 𝛼 > 0.5, the discount customers receive on the energy cost
becomes more significant, thereby reducing the per-unit cost 𝐶𝑜𝑠𝑡𝐷𝐸𝑅

𝑖
that customers have to pay for energy from the DER. This might be
attractive for customers as they get to pay less for their energy needs
compared to the grid price. However, from the DER’s perspective,
a larger 𝛼 implies that the income per unit energy sold decreases,
since customers are now buying energy at a lower cost. This could
potentially lead to discouraging DERs, such as wind or solar energy
sources, to maximize their outputs. In the assessment of DER outputs
with varying 𝛼 values, it is observed that the DER 1 output does not
reach the maximum potential of 1405.15 kW for 𝛼 values beyond
0.5. Specifically, when 𝛼 equals 0.6, the DER output is approximately
1170.96 kW, which decreases to 1003.68 kW, 878.22 kW, 780.64 kW,
and 702.57 kW for 𝛼 values of 0.7, 0.8, 0.9, and 1.0, respectively.
Similarly, as 𝛼 increases from 0.6 to 1.0, the DER 2 output decreases
significantly from 2167.1 kW to 1857.5 kW, 1625.3 kW, 1444.7 kW,
and finally 1300.3 kW which cannot reach the maximum potential of
2600.50 kW. When 𝛼 equals 1, it implies that the energy from the DER
is free when DERs reach the maximum output, which is unrealistic, as
shown in Fig. 6(c) and (d).

When 𝛼 = 0.5, a balance point is achieved by ensuring that both
DERs are incentivized to produce up to their maximum capacity, and
customers are not burdened with high energy costs. At this level, the
cost per unit of DERs is reasonable enough to motivate DERs to reach
their maximum output of 1405.15 kW and 2600.50 kW separately,
resulting in their income reaching the maximum. Meanwhile, the cost
to the consumer remains at a fair rate, preserving the demand for DER-
produced energy. Our data analysis indicates that an 𝛼 of 0.5 appears
to be a good compromise that takes into account both DERs’ and
consumers’ perspectives, while ensuring model realism and robustness.

4. Conclusion

This paper reports work on building a new P2P energy market
model supported by dynamic power flow tracing in power distribution
networks. An optimized market segmenting strategy based on identify-
ing power transactions is proposed. Graph-based modeling is applied
to determine electricity transaction costs and maximize the benefits of
both DERs and consumers by quantifying each transaction’s usage of
the network with allocated losses.

The key findings of the proposed work can be summarized as fol-
lows: The proposed model effectively/successfully established a promis-
ing link between the P2P energy market and distribution network
infrastructure from generation to consumption by considering the tech-
nical constraints. The introduced market segmentation approach based
on transaction-oriented dynamic power flow tracing can technically
and economically define the market boundaries in a physical system.
The optimization results of the proposed model demonstrated oppor-
tunities for profits within several markets segmented by power flow
tracing, compared with the existing centralized market with unified
incentives for both individual DER owners and consumers. It showed a
high potential to increase the DER owners’ revenue that varied between
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Table 7
Robustness check for the loss function based on loss indexes of DER 2 in DER 1 upstream market.

𝑚 𝑑 𝑎 𝑏 𝑐 Errora

Original form −0.0464 – −0.0492 0.0800 0.8813 4.10E−04
Function I −0.7859 – – – – 5.63E−01
Function II – – 0.0701 −0.1517 0.9992 2.64E−03
Function III – 0.0117 0.0190 0.0092 0.0013 1.38E−03

a Standard error of the regression.
Fig. 6. Robustness check for 𝛼 of (a) Electricity purchase cost from DER 1 (b) Electricity purchase cost from DER 2 (c) DER 1 Income (d) DER 2 income.
£1264.58 and £1910.79; when compared with a traditional FiT model;
meanwhile, consumers see reduced bills of up to £1736.44 (as shown
in the Case Study) with lower tariffs.

The proposed P2P electricity market encourages DERs to operate at
their maximum/rated capacity with high profit. Meantime, more con-
tributing and sharing of DERs in the network are related to more power
losses they take responsibility for. It also reveals that DERs located
close to the tails of the network have a higher market proportion than
DERs locate close to the substation. This could encourage installations
of DERs towards the end of the networks helpful to alleviate potential
voltage drop issues. For potential over-voltage issues, optimally con-
trollable DERs can reduce their net output to overcome voltage rise
constraints (e.g. curtailing by limiting maximum power point tracking,
or combining battery energy storage systems). It is anticipated that
higher-cost DERs could be firstly cut, but they would be able to change
bidding strategy to avoid that, based on their own profit optimization.
Meanwhile, the robustness checks clearly illustrate the critical impact
of both the loss function and the coefficient alpha on the DER costs
and income, signifying their essential roles in maximizing DER output
and optimizing customer costs, underscoring the importance of prudent
parameter selection and model formulation in energy market studies.
12
The network usage charges of all transactions and pricing strategies
of DERs would require further research, taking into account the life of
equipment/assets, such as transformers, switches and wires, and DERs’
capital investment. Meanwhile, stochastic optimization needs to be
further considered with solar panels and wind turbines’ power output
depending on the weather.
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Fig. 7. Graph matrix of 24-h market.
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Appendix

The graph matrix generated for the case study is shown in the Fig. 7,
with blocks representing OptiNode and blue marks representing linking
constraints that connect their variables [35]. Blocks’ number in one
graph equal to hours × participants’ number. For example, hours 1 to
3 have two participants. Therefore, there are 6 blocks.

In hours 8 to 10, hours 11 to 13 and hours 14 to 17, market I
has more blue marks than market II. This is due to that market I has
three participants, DER 1, DER 2 and 𝑙𝑜𝑎𝑑𝑎; conversely, market II have
two participants DER 2 and 𝑙𝑜𝑎𝑑𝑎. The number of the link constraints
between three participants is more than the that of the link constraints
between two participants.
13
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