Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/127983
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Delgado-Dolset, María Isabel | en_US |
dc.contributor.author | Obeso, David | en_US |
dc.contributor.author | Rodríguez-Coira, Juan | en_US |
dc.contributor.author | Tarin, Carlos | en_US |
dc.contributor.author | Tan, Ge | en_US |
dc.contributor.author | Cumplido, José A. | en_US |
dc.contributor.author | García Cabrera, Antonia Mercedes | en_US |
dc.contributor.author | Angulo, Santiago | en_US |
dc.contributor.author | Barbas, Coral | en_US |
dc.contributor.author | Sokolowska, Milena | en_US |
dc.contributor.author | Barber, Domingo | en_US |
dc.contributor.author | Carrillo Díaz, Teresa | en_US |
dc.contributor.author | Villaseñor, Alma | en_US |
dc.contributor.author | Escribese, María M. | en_US |
dc.date.accessioned | 2023-12-18T14:05:20Z | - |
dc.date.available | 2023-12-18T14:05:20Z | - |
dc.date.issued | 2022 | en_US |
dc.identifier.issn | 0105-4538 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/127983 | - |
dc.description.abstract | Background: Asthma is a complex, multifactorial disease often linked with sensitization to house dust mites (HDM). There is a subset of patients that does not respond to available treatments, who present a higher number of exacerbations and a worse quality of life. To understand the mechanisms of poor asthma control and disease severity, we aim to elucidate the metabolic and immunologic routes underlying this specific phenotype and the associated clinical features. Methods: Eighty-seven patients with a clinical history of asthma were recruited and stratified in 4 groups according to their response to treatment: corticosteroid-controlled (ICS), immunotherapy-controlled (IT), biologicals-controlled (BIO) or uncontrolled (UC). Serum samples were analysed by metabolomics and proteomics; and classifiers were built using machine-learning algorithms. Results: Metabolomic analysis showed that ICS and UC groups cluster separately from one another and display the highest number of significantly different metabolites among all comparisons. Metabolite identification and pathway enrichment analysis highlighted increased levels of lysophospholipids related to inflammatory pathways in the UC patients. Likewise, 8 proteins were either upregulated (CCL13, ARG1, IL15 and TNFRSF12A) or downregulated (sCD4, CCL19 and IFNγ) in UC patients compared to ICS, suggesting a significant activation of T cells in these patients. Finally, the machine-learning model built including metabolomic and clinical data was able to classify the patients with an 87.5% accuracy. Conclusions: UC patients display a unique fingerprint characterized by inflammatory-related metabolites and proteins, suggesting a pro-inflammatory environment. Moreover, the integration of clinical and experimental data led to a deeper understanding of the mechanisms underlying UC phenotype. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Allergy: European Journal of Allergy and Clinical Immunology | en_US |
dc.source | Allergy: European Journal of Allergy and Clinical Immunology, [ISNN 0105-4538], v. 77 (6), p. 1772-1785, (2022). | en_US |
dc.subject | 32 Ciencias médicas | en_US |
dc.subject | 320701 Alergias | en_US |
dc.subject.other | Allergy | en_US |
dc.subject.other | Asthma | en_US |
dc.subject.other | Machine learning | en_US |
dc.subject.other | Metabolomics | en_US |
dc.subject.other | Proteomics | en_US |
dc.title | Understanding uncontrolled severe allergic asthma by integration of omic and clinical data | en_US |
dc.title.alternative | Comprender el asma alérgica grave no controlada mediante la integración de datos ómicos y clínicos | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1111/all.15192 | en_US |
dc.identifier.pmid | 34839541 | - |
dc.identifier.scopus | 2-s2.0-85120849910 | - |
dc.identifier.isi | WOS:000728437400001 | - |
dc.contributor.orcid | 0000-0001-7924-5454 | - |
dc.contributor.orcid | 0000-0001-7875-7327 | - |
dc.contributor.orcid | 0000-0003-0517-7078 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | 0000-0003-0026-8739 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | 0000-0002-7868-7442 | - |
dc.contributor.orcid | 0000-0003-4722-491X | - |
dc.contributor.orcid | 0000-0001-9710-6685 | - |
dc.contributor.orcid | 0000-0002-5488-5700 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | 0000-0002-6652-2739 | - |
dc.contributor.orcid | 0000-0001-5057-5150 | - |
dc.description.lastpage | 1785 | en_US |
dc.identifier.issue | 6 | - |
dc.description.firstpage | 1772 | en_US |
dc.relation.volume | 77 | en_US |
dc.investigacion | Ciencias de la Salud | en_US |
dc.type2 | Artículo | en_US |
dc.description.notas | ISCIII (PI18/01467 and PI19/00044).ARADyAL RD16/0006/0015.FEDER RTI2018-095166-B-I00 | en_US |
dc.description.numberofpages | 14 | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-MED | en_US |
dc.description.sjr | 2,734 | - |
dc.description.jcr | 12,4 | - |
dc.description.sjrq | Q1 | - |
dc.description.jcrq | Q1 | - |
dc.description.scie | SCIE | - |
dc.description.miaricds | 11,0 | - |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR IUIBS: Patología y Tecnología médica | - |
crisitem.author.dept | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.dept | Departamento de Ciencias Médicas y Quirúrgicas | - |
crisitem.author.orcid | 0000-0002-3047-8908 | - |
crisitem.author.parentorg | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.fullName | Carrillo Díaz, Teresa | - |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.