Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/127983
DC FieldValueLanguage
dc.contributor.authorDelgado-Dolset, María Isabelen_US
dc.contributor.authorObeso, Daviden_US
dc.contributor.authorRodríguez-Coira, Juanen_US
dc.contributor.authorTarin, Carlosen_US
dc.contributor.authorTan, Geen_US
dc.contributor.authorCumplido, José A.en_US
dc.contributor.authorGarcía Cabrera, Antonia Mercedesen_US
dc.contributor.authorAngulo, Santiagoen_US
dc.contributor.authorBarbas, Coralen_US
dc.contributor.authorSokolowska, Milenaen_US
dc.contributor.authorBarber, Domingoen_US
dc.contributor.authorCarrillo Díaz, Teresaen_US
dc.contributor.authorVillaseñor, Almaen_US
dc.contributor.authorEscribese, María M.en_US
dc.date.accessioned2023-12-18T14:05:20Z-
dc.date.available2023-12-18T14:05:20Z-
dc.date.issued2022en_US
dc.identifier.issn0105-4538en_US
dc.identifier.urihttp://hdl.handle.net/10553/127983-
dc.description.abstractBackground: Asthma is a complex, multifactorial disease often linked with sensitization to house dust mites (HDM). There is a subset of patients that does not respond to available treatments, who present a higher number of exacerbations and a worse quality of life. To understand the mechanisms of poor asthma control and disease severity, we aim to elucidate the metabolic and immunologic routes underlying this specific phenotype and the associated clinical features. Methods: Eighty-seven patients with a clinical history of asthma were recruited and stratified in 4 groups according to their response to treatment: corticosteroid-controlled (ICS), immunotherapy-controlled (IT), biologicals-controlled (BIO) or uncontrolled (UC). Serum samples were analysed by metabolomics and proteomics; and classifiers were built using machine-learning algorithms. Results: Metabolomic analysis showed that ICS and UC groups cluster separately from one another and display the highest number of significantly different metabolites among all comparisons. Metabolite identification and pathway enrichment analysis highlighted increased levels of lysophospholipids related to inflammatory pathways in the UC patients. Likewise, 8 proteins were either upregulated (CCL13, ARG1, IL15 and TNFRSF12A) or downregulated (sCD4, CCL19 and IFNγ) in UC patients compared to ICS, suggesting a significant activation of T cells in these patients. Finally, the machine-learning model built including metabolomic and clinical data was able to classify the patients with an 87.5% accuracy. Conclusions: UC patients display a unique fingerprint characterized by inflammatory-related metabolites and proteins, suggesting a pro-inflammatory environment. Moreover, the integration of clinical and experimental data led to a deeper understanding of the mechanisms underlying UC phenotype.en_US
dc.languageengen_US
dc.relation.ispartofAllergy: European Journal of Allergy and Clinical Immunologyen_US
dc.sourceAllergy: European Journal of Allergy and Clinical Immunology, [ISNN 0105-4538], v. 77 (6), p. 1772-1785, (2022).en_US
dc.subject32 Ciencias médicasen_US
dc.subject320701 Alergiasen_US
dc.subject.otherAllergyen_US
dc.subject.otherAsthmaen_US
dc.subject.otherMachine learningen_US
dc.subject.otherMetabolomicsen_US
dc.subject.otherProteomicsen_US
dc.titleUnderstanding uncontrolled severe allergic asthma by integration of omic and clinical dataen_US
dc.title.alternativeComprender el asma alérgica grave no controlada mediante la integración de datos ómicos y clínicosen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1111/all.15192en_US
dc.identifier.pmid34839541-
dc.identifier.scopus2-s2.0-85120849910-
dc.identifier.isiWOS:000728437400001-
dc.contributor.orcid0000-0001-7924-5454-
dc.contributor.orcid0000-0001-7875-7327-
dc.contributor.orcid0000-0003-0517-7078-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0003-0026-8739-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0002-7868-7442-
dc.contributor.orcid0000-0003-4722-491X-
dc.contributor.orcid0000-0001-9710-6685-
dc.contributor.orcid0000-0002-5488-5700-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0002-6652-2739-
dc.contributor.orcid0000-0001-5057-5150-
dc.description.lastpage1785en_US
dc.identifier.issue6-
dc.description.firstpage1772en_US
dc.relation.volume77en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.description.notasISCIII (PI18/01467 and PI19/00044).ARADyAL RD16/0006/0015.FEDER RTI2018-095166-B-I00en_US
dc.description.numberofpages14en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr2,734-
dc.description.jcr12,4-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds11,0-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUIBS: Patología y Tecnología médica-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.orcid0000-0002-3047-8908-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameCarrillo Díaz, Teresa-
Appears in Collections:Artículos
Adobe PDF (10,6 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.