Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127584
Campo DC Valoridioma
dc.contributor.authorPatiño, Jairoen_US
dc.contributor.authorCollart, Flavienen_US
dc.contributor.authorVanderpoorten, Alainen_US
dc.contributor.authorMartin-Esquivel, José Luisen_US
dc.contributor.authorNaranjo Cigala, Agustínen_US
dc.contributor.authorMirolo, Sébastienen_US
dc.contributor.authorKarger, Dirk N.en_US
dc.date.accessioned2023-11-09T15:25:47Z-
dc.date.available2023-11-09T15:25:47Z-
dc.date.issued2023en_US
dc.identifier.issn1472-4642en_US
dc.identifier.urihttp://hdl.handle.net/10553/127584-
dc.description.abstractUnderstanding how grain size affects our ability to characterize species responses to ongoing climate change is of crucial importance in the context of an increasing awareness for the substantial difference that exists between coarse spatial resolution macroclimatic data sets and the microclimate actually experienced by organisms. Climate change impacts on biodiversity are expected to peak in mountain areas, wherein the differences between macro and microclimates are precisely the largest. Based on a newly generated fine-scale environmental data for the Canary Islands, we assessed whether data at 100 m resolution is able to provide more accurate predictions than available data at 1 km resolution. We also analysed how future climate suitability predictions of island endemic bryophytes differ depending on the grain size of grids.Location Canary Islands. Time period Present (1979–2013) and late-century (2071–2100). Taxa Bryophytes. Methods We compared the accuracy and spatial predictions using ensemble of small models for 14 Macaronesian endemic bryophyte species. We used two climate data sets: CHELSA v1.2 (~1 km) and CanaryClim v1.0 (100 m), a downscaled version of the latter utilizing data from local weather stations. CanaryClim also encompasses future climate data from five individual model intercomparison projects for three warming shared socio-economic pathways. Results Species distribution models generated from CHELSA and CanaryClim exhibited a similar accuracy, but CanaryClim predicted buffered warming trends in mid-elevation ridges. CanaryClim consistently returned higher proportions of newly suitable pixels (8%–28%) than CHELSA models (0%–3%). Consequently, the proportion of species predicted to occupy pixels of uncertain suitability was higher with CHELSA (3–8 species) than with CanaryClim (0–2 species). Main conclusions The resolution of climate data impacted the predictions rather than the performance of species distribution models. Our results highlight the crucial role that fine-resolution climate data sets can play in predicting the potential distribution of both microrefugia and new suitable range under warming climate.en_US
dc.languageengen_US
dc.relationHacia un modelo mecanístico de invasión en islas oceánicas: determinantes del éxito de establecimiento e invasión de plantas exóticas (PID2019-110538GA-I00)en_US
dc.relationEl Reto de las Plantas Invasoras en Islas: Hacia un Enfoque Integrador para la Conservación de la Flora de las Islas Canarias. (PR19_ECO_0046)en_US
dc.relation.ispartofDiversity and Distributionsen_US
dc.sourceDiversity and Distributions [1472-4642], vol.29(10), p. 1245-1262en_US
dc.subject250501-1 Biogeografía botánicaen_US
dc.subject2502 Climatologíaen_US
dc.subject.otherBryophytesen_US
dc.subject.otherCanary Islandsen_US
dc.subject.otherClimate warmingen_US
dc.subject.otherMicrorefugiaen_US
dc.subject.otherRange shiften_US
dc.subject.otherSpecies distribution modelsen_US
dc.titleSpatial resolution impacts projected plant responses to climate change on topographically complex islandsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1111/ddi.13757en_US
dc.description.lastpage1262en_US
dc.description.firstpage1245en_US
dc.investigacionArtes y Humanidadesen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-HUMen_US
dc.description.sjr1,787
dc.description.jcr4,6
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,9
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUNAT: Biología Integrativa y Recursos Biológicos-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Geografía-
crisitem.author.orcid0000-0001-8191-7344-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.fullNameNaranjo Cigala, Agustín-
Colección:Artículos
Adobe PDF (4,77 MB)
Vista resumida

Citas de WEB OF SCIENCETM
Citations

8
actualizado el 17-nov-2024

Visitas

27
actualizado el 27-abr-2024

Descargas

15
actualizado el 27-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.