Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/127432
DC FieldValueLanguage
dc.contributor.authorBarra, Paolaen_US
dc.contributor.authorOrefice, Giosuèen_US
dc.contributor.authorAuriemma Citarella, Alessiaen_US
dc.contributor.authorCastrillón Santana, Modesto Fernandoen_US
dc.contributor.authorCiaramella, Angeloen_US
dc.date.accessioned2023-10-30T15:30:05Z-
dc.date.available2023-10-30T15:30:05Z-
dc.date.issued2023en_US
dc.identifier.isbn979-8-4007-0116-0en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/127432-
dc.description.abstractThe marine ecosystem faces a significant threat due to the release of human waste into the sea. One of the most challenging issues is identifying and removing small particles that settle on the sand. These particles can be ingested by local fauna or cause harm to the marine ecosystem. Distinguishing these particles from natural materials like shells and stones is difficult, as they blend in with the surroundings. To address this problem, we utilized the Litter On The Sand (LOTS) dataset, which comprises images of clean, dirty, and wavy sand from three different beaches. We established an initial benchmark on this dataset by employing state-of-the-art Deep Learning segmentation techniques. The evaluated models included MultiResU-Net, Half MultiResU-Net, and Quarter MultiResU-Net. The results revealed that the Half MultiResU-Net model outperformed the others for most types of sand analyzed, providing valuable insights for future efforts in combating marine litter and preserving the health of our marine ecosystems.en_US
dc.languageengen_US
dc.sourceGoodIT '23: ACM International Conference on Information Technology for Social Good, 2023, p. 1-5, Lisbon Portugal , (Septiembre 2023)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherComputer visionen_US
dc.subject.otherDataseten_US
dc.subject.otherLitter detectionen_US
dc.subject.otherMachine learningen_US
dc.subject.otherSegmentationen_US
dc.titleLitter segmentation with LOTS dataseten_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceACM 3rd International Conference on Information Technology for Social Good (GoodIT 2023)en_US
dc.identifier.doi10.1145/3582515.3609511en_US
dc.identifier.scopus85174295182-
dc.contributor.orcid0000-0002-7692-0626-
dc.contributor.orcid0009-0003-1464-4173-
dc.contributor.orcid0000-0002-6525-0217-
dc.contributor.orcid0000-0002-8673-2725-
dc.contributor.orcid0000-0001-5592-7995-
dc.contributor.authorscopusid57205195650-
dc.contributor.authorscopusid58571613300-
dc.contributor.authorscopusid57226113587-
dc.contributor.authorscopusid57218418238-
dc.contributor.authorscopusid7003470719-
dc.description.lastpage5en_US
dc.description.firstpage1en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages5en_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2023en_US
dc.identifier.conferenceidevents150445-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Appears in Collections:Actas de congresos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.