Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127128
Campo DC Valoridioma
dc.contributor.authorFaundez-Zanuy, Marcosen_US
dc.contributor.authorDiaz, Moisesen_US
dc.contributor.authorFerrer Ballester, Miguel Ángelen_US
dc.date.accessioned2023-10-04T08:57:01Z-
dc.date.available2023-10-04T08:57:01Z-
dc.date.issued2023en_US
dc.identifier.issn1866-9956en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/127128-
dc.description.abstractThis research introduces an innovative approach to explore the cognitive and biologically inspired underpinnings of feature vector splitting for analyzing the significance of different attributes in e-security biometric signature recognition applications. Departing from traditional methods of concatenating features into an extended set, we employ multiple splitting strategies, aligning with cognitive principles, to preserve control over the relative importance of each feature subset. Our methodology is applied to three diverse databases (MCYT100, MCYT300, and SVC) using two classifiers (vector quantization and dynamic time warping with one and five training samples). Experimentation demonstrates that the fusion of pressure data with spatial coordinates (x and y) consistently enhances performance. However, the inclusion of pen-tip angles in the same feature set yields mixed results, with performance improvements observed in select cases. This work delves into the cognitive aspects of feature fusion, shedding light on the cognitive relevance of feature vector splitting in e-security biometric applications.en_US
dc.languagespaen_US
dc.relation.ispartofCognitive Computationen_US
dc.sourceCognitive Computation [ISSN 1866-9956], septiembre 2023en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherBiometricsen_US
dc.subject.otherDynamic Time Warpingen_US
dc.subject.otherE-Securityen_US
dc.subject.otherOnline Signatureen_US
dc.subject.otherVector Quantizationen_US
dc.titleOnline Signature Recognition: A Biologically Inspired Feature Vector Splitting Approachen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12559-023-10205-9en_US
dc.identifier.scopus85171273226-
dc.contributor.orcid0000-0003-0605-1282-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57238059400-
dc.contributor.authorscopusid58552611900-
dc.contributor.authorscopusid55636321172-
dc.identifier.eissn1866-9964-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages13en_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,179
dc.description.jcr5,4
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,6
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.