Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/123962
Título: Quality, Usability, and Effectiveness of mHealth Apps and the Role of Artificial Intelligence: Current Scenario and Challenges
Autores/as: Déniz García,Alejandro 
Fabelo Gómez, Himar Antonio 
Rodríguez Almeida, Antonio José 
Zamora Zamorano,Garlene 
Castro Fernández, María 
Alberiche Ruano,Maria Del Pino 
Solvoll, Terje
Granja, Conceição
Schopf, Thomas Roger
Marrero Callicó, Gustavo Iván 
Soguero-Ruiz, Cristina
Wägner, Anna Maria Claudia 
Clasificación UNESCO: 32 Ciencias médicas
3201 Ciencias clínicas
3314 Tecnología médica
Palabras clave: Artificial intelligence
Big data
Chronic disease prevention and management
mHealth
Mobile health, et al.
Fecha de publicación: 2023
Publicación seriada: Journal of Medical Internet Research 
Resumen: The use of artificial intelligence (AI) and big data in medicine has increased in recent years. Indeed, the use of AI in mobile health (mHealth) apps could considerably assist both individuals and health care professionals in the prevention and management of chronic diseases, in a person-centered manner. Nonetheless, there are several challenges that must be overcome to provide high-quality, usable, and effective mHealth apps. Here, we review the rationale and guidelines for the implementation of mHealth apps and the challenges regarding quality, usability, and user engagement and behavior change, with a special focus on the prevention and management of noncommunicable diseases. We suggest that a cocreation-based framework is the best method to address these challenges. Finally, we describe the current and future roles of AI in improving personalized medicine and provide recommendations for developing AI-based mHealth apps. We conclude that the implementation of AI and mHealth apps for routine clinical practice and remote health care will not be feasible until we overcome the main challenges regarding data privacy and security, quality assessment, and the reproducibility and uncertainty of AI results. Moreover, there is a lack of both standardized methods to measure the clinical outcomes of mHealth apps and techniques to encourage user engagement and behavior changes in the long term. We expect that in the near future, these obstacles will be overcome and that the ongoing European project, Watching the risk factors (WARIFA), will provide considerable advances in the implementation of AI-based mHealth apps for disease prevention and health promotion.
URI: http://hdl.handle.net/10553/123962
ISSN: 1438-8871
DOI: 10.2196/44030
Fuente: Journal of Medical Internet Research [1438-8871], v. 25: e44030 (Mayo 2023)
Colección:Artículos
Adobe PDF (892,86 kB)
Vista completa

Citas SCOPUSTM   

27
actualizado el 15-dic-2024

Visitas

54
actualizado el 18-may-2024

Descargas

66
actualizado el 18-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.