Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/123849
Título: A machine learning approach to design a DPSIR model: A real case implementation of evidence-based policy creation using AI
Autores/as: Peñate Sánchez, Adrián 
Peña Alonso, Carolina Priscila 
Perez-Chacon Espino, María Emma 
Falcón Martel, Antonio 
Clasificación UNESCO: 3308 Ingeniería y tecnología del medio ambiente
590208 Política del medio ambiente
Palabras clave: DPSIR
Evidence-Based Policy
Las Canteras Beach
Metric Learning
Sustainability, et al.
Fecha de publicación: 2023
Proyectos: Infraestructura de Computación Científica Para Aplicaciones de Inteligencia Artificialy Simulación Numérica en Medioambientey Gestión de Energías Renovables (Iusiani-Ods) 
Publicación seriada: Advanced Engineering Informatics 
Resumen: In this paper a method to learn a similarity metric from expert assessments via questionnaires is presented. The approach employed provides a solution to the modelling of a DPSIR sustainability approach where budgetary resources are limited and thus there is a need to select the most informative variables from the identified possibilities. This paper also shows the proposed approach already implemented by the local council of Las Palmas of Gran Canaria as part of the work to create a sustainability system to better control the impact of human pressure in the local region. The metric is learned using a weakly supervised approach and the expert assessments are modelled through variable triplets. The employment of machine learning approaches in the creation of sustainability models is fairly recent and rare but presents a great opportunity to contribute to one of the main challenges that human societies have to face nowadays.
URI: http://hdl.handle.net/10553/123849
ISSN: 1474-0346
DOI: 10.1016/j.aei.2023.102042
Fuente: Advanced Engineering Informatics [ISSN 1474-0346], v. 57, 102042, (Agosto 2023)
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.