Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/123409
Campo DC Valoridioma
dc.contributor.authorVega, Carlosen_US
dc.contributor.authorQuintana, Lauraen_US
dc.contributor.authorOrtega, Samuelen_US
dc.contributor.authorFabelo, Himaren_US
dc.contributor.authorSauras, Estheren_US
dc.contributor.authorGallardo, Noèliaen_US
dc.contributor.authorMata, Danielen_US
dc.contributor.authorLejeune, Maryleneen_US
dc.contributor.authorLopez, Carlosen_US
dc.contributor.authorCallicó, Gustavo M.en_US
dc.date.accessioned2023-06-12T07:15:18Z-
dc.date.available2023-06-12T07:15:18Z-
dc.date.issued2023en_US
dc.identifier.isbn9781510660472en_US
dc.identifier.issn1605-7422en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/123409-
dc.description.abstractThe current advances in Whole-Slide Imaging (WSI) scanners allow for more and better visualization of histological slides. However, the analysis of histological samples by visual inspection is subjective and could be challenging. State-of-the-art object detection algorithms can be trained for cell spotting in a WSI. In this work, a new framework for the detection of tumor cells in high-resolution and high-detail using both RGB and Hyperspectral (HS) imaging is proposed. The framework introduces techniques to be trained on partially labeled data, since labeling at the cellular level is a time and energy-consuming task. Furthermore, the framework has been developed for working with RGB and HS information reduced to 3 bands. Current results are promising, showcasing in RGB similar performance as reference works (F1-score = 66.2%) and high possibilities for the integration of reduced HS information into current state-of-art deep learning models, with current results improving the mean precision a 6.3% from synthetic RGB images.en_US
dc.languageengen_US
dc.relation.ispartofProgress in Biomedical Optics and Imaging - Proceedings of SPIEen_US
dc.sourceProgress in Biomedical Optics and Imaging - Proceedings of SPIE[ISSN 1605-7422],v. 12471, (Enero 2023)en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.otherBreast Tumoren_US
dc.subject.otherConvolutional Neural Networken_US
dc.subject.otherDeep Learningen_US
dc.subject.otherHyperspectral Imagingen_US
dc.titleYOLOX-based Framework for Nuclei Detection on Whole-Slide Histopathological RGB and Hyperspectral Imagesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceMedical Imaging 2023: Digital and Computational Pathologyen_US
dc.identifier.doi10.1117/12.2654036en_US
dc.identifier.scopus85160554232-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57743927600-
dc.contributor.authorscopusid57226830782-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid57763802600-
dc.contributor.authorscopusid58099860500-
dc.contributor.authorscopusid57447830500-
dc.contributor.authorscopusid9636657600-
dc.contributor.authorscopusid55550735500-
dc.contributor.authorscopusid56006321500-
dc.relation.volume12471en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.conferenceidevents150265-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,226
dc.description.sjrq-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate03-10-2022-
crisitem.event.eventsenddate07-10-2022-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-1154-6490-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameQuintana Quintana, Laura-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.