Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/123409
DC FieldValueLanguage
dc.contributor.authorVega, Carlosen_US
dc.contributor.authorQuintana, Lauraen_US
dc.contributor.authorOrtega, Samuelen_US
dc.contributor.authorFabelo, Himaren_US
dc.contributor.authorSauras, Estheren_US
dc.contributor.authorGallardo, Noèliaen_US
dc.contributor.authorMata, Danielen_US
dc.contributor.authorLejeune, Maryleneen_US
dc.contributor.authorLopez, Carlosen_US
dc.contributor.authorCallicó, Gustavo M.en_US
dc.date.accessioned2023-06-12T07:15:18Z-
dc.date.available2023-06-12T07:15:18Z-
dc.date.issued2023en_US
dc.identifier.isbn9781510660472en_US
dc.identifier.issn1605-7422en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/123409-
dc.description.abstractThe current advances in Whole-Slide Imaging (WSI) scanners allow for more and better visualization of histological slides. However, the analysis of histological samples by visual inspection is subjective and could be challenging. State-of-the-art object detection algorithms can be trained for cell spotting in a WSI. In this work, a new framework for the detection of tumor cells in high-resolution and high-detail using both RGB and Hyperspectral (HS) imaging is proposed. The framework introduces techniques to be trained on partially labeled data, since labeling at the cellular level is a time and energy-consuming task. Furthermore, the framework has been developed for working with RGB and HS information reduced to 3 bands. Current results are promising, showcasing in RGB similar performance as reference works (F1-score = 66.2%) and high possibilities for the integration of reduced HS information into current state-of-art deep learning models, with current results improving the mean precision a 6.3% from synthetic RGB images.en_US
dc.languageengen_US
dc.relation.ispartofProgress in Biomedical Optics and Imaging - Proceedings of SPIEen_US
dc.sourceProgress in Biomedical Optics and Imaging - Proceedings of SPIE[ISSN 1605-7422],v. 12471, (Enero 2023)en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.otherBreast Tumoren_US
dc.subject.otherConvolutional Neural Networken_US
dc.subject.otherDeep Learningen_US
dc.subject.otherHyperspectral Imagingen_US
dc.titleYOLOX-based Framework for Nuclei Detection on Whole-Slide Histopathological RGB and Hyperspectral Imagesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceMedical Imaging 2023: Digital and Computational Pathologyen_US
dc.identifier.doi10.1117/12.2654036en_US
dc.identifier.scopus85160554232-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57743927600-
dc.contributor.authorscopusid57226830782-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid57763802600-
dc.contributor.authorscopusid58099860500-
dc.contributor.authorscopusid57447830500-
dc.contributor.authorscopusid9636657600-
dc.contributor.authorscopusid55550735500-
dc.contributor.authorscopusid56006321500-
dc.relation.volume12471en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.conferenceidevents150265-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,226
dc.description.sjrq-
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.event.eventsstartdate03-10-2022-
crisitem.event.eventsenddate07-10-2022-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-1154-6490-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameQuintana Quintana, Laura-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

29
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.