Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/123409
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vega, Carlos | en_US |
dc.contributor.author | Quintana, Laura | en_US |
dc.contributor.author | Ortega, Samuel | en_US |
dc.contributor.author | Fabelo, Himar | en_US |
dc.contributor.author | Sauras, Esther | en_US |
dc.contributor.author | Gallardo, Noèlia | en_US |
dc.contributor.author | Mata, Daniel | en_US |
dc.contributor.author | Lejeune, Marylene | en_US |
dc.contributor.author | Lopez, Carlos | en_US |
dc.contributor.author | Callicó, Gustavo M. | en_US |
dc.date.accessioned | 2023-06-12T07:15:18Z | - |
dc.date.available | 2023-06-12T07:15:18Z | - |
dc.date.issued | 2023 | en_US |
dc.identifier.isbn | 9781510660472 | en_US |
dc.identifier.issn | 1605-7422 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/123409 | - |
dc.description.abstract | The current advances in Whole-Slide Imaging (WSI) scanners allow for more and better visualization of histological slides. However, the analysis of histological samples by visual inspection is subjective and could be challenging. State-of-the-art object detection algorithms can be trained for cell spotting in a WSI. In this work, a new framework for the detection of tumor cells in high-resolution and high-detail using both RGB and Hyperspectral (HS) imaging is proposed. The framework introduces techniques to be trained on partially labeled data, since labeling at the cellular level is a time and energy-consuming task. Furthermore, the framework has been developed for working with RGB and HS information reduced to 3 bands. Current results are promising, showcasing in RGB similar performance as reference works (F1-score = 66.2%) and high possibilities for the integration of reduced HS information into current state-of-art deep learning models, with current results improving the mean precision a 6.3% from synthetic RGB images. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Progress in Biomedical Optics and Imaging - Proceedings of SPIE | en_US |
dc.source | Progress in Biomedical Optics and Imaging - Proceedings of SPIE[ISSN 1605-7422],v. 12471, (Enero 2023) | en_US |
dc.subject | 220990 Tratamiento digital. Imágenes | en_US |
dc.subject.other | Breast Tumor | en_US |
dc.subject.other | Convolutional Neural Network | en_US |
dc.subject.other | Deep Learning | en_US |
dc.subject.other | Hyperspectral Imaging | en_US |
dc.title | YOLOX-based Framework for Nuclei Detection on Whole-Slide Histopathological RGB and Hyperspectral Images | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | Medical Imaging 2023: Digital and Computational Pathology | en_US |
dc.identifier.doi | 10.1117/12.2654036 | en_US |
dc.identifier.scopus | 85160554232 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 57743927600 | - |
dc.contributor.authorscopusid | 57226830782 | - |
dc.contributor.authorscopusid | 57189334144 | - |
dc.contributor.authorscopusid | 56405568500 | - |
dc.contributor.authorscopusid | 57763802600 | - |
dc.contributor.authorscopusid | 58099860500 | - |
dc.contributor.authorscopusid | 57447830500 | - |
dc.contributor.authorscopusid | 9636657600 | - |
dc.contributor.authorscopusid | 55550735500 | - |
dc.contributor.authorscopusid | 56006321500 | - |
dc.relation.volume | 12471 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2023 | en_US |
dc.identifier.conferenceid | events150265 | - |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,226 | |
dc.description.sjrq | - | |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.event.eventsstartdate | 03-10-2022 | - |
crisitem.event.eventsenddate | 07-10-2022 | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.orcid | 0000-0003-1154-6490 | - |
crisitem.author.orcid | 0000-0002-7519-954X | - |
crisitem.author.orcid | 0000-0002-9794-490X | - |
crisitem.author.orcid | 0000-0002-3784-5504 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Quintana Quintana, Laura | - |
crisitem.author.fullName | Ortega Sarmiento,Samuel | - |
crisitem.author.fullName | Fabelo Gómez, Himar Antonio | - |
crisitem.author.fullName | Marrero Callicó, Gustavo Iván | - |
Appears in Collections: | Actas de congresos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.