Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/123119
DC FieldValueLanguage
dc.contributor.authorBousbaa, Zineben_US
dc.contributor.authorSánchez Medina, Javier Jesúsen_US
dc.contributor.authorBencharef, Omaren_US
dc.date.accessioned2023-05-31T12:16:08Z-
dc.date.available2023-05-31T12:16:08Z-
dc.date.issued2023en_US
dc.identifier.issn2079-9292en_US
dc.identifier.urihttp://hdl.handle.net/10553/123119-
dc.description.abstractData stream mining (DSM) represents a promising process to forecast financial time series exchange rate. Financial historical data generate several types of cyclical patterns that evolve, grow, decrease, and end up dying. Within historical data, we can notice long-term, seasonal, and irregular trends. All these changes make traditional static machine learning models not relevant to those study cases. The statistically unstable evolution of financial market behavior yields a progressive deterioration in any trained static model. Those models do not provide the required characteristics to evolve continuously and sustain good forecasting performance as the data distribution changes. Online learning without DSM mechanisms can also miss sudden or quick changes. In this paper, we propose a possible DSM methodology, trying to cope with that instability by implementing an incremental and adaptive strategy. The proposed algorithm includes the online Stochastic Gradient Descent algorithm (SGD), whose weights are optimized using the Particle Swarm Optimization Metaheuristic (PSO) to identify repetitive chart patterns in the FOREX historical data by forecasting the EUR/USD pair’s future values. The data trend change is detected using a statistical technique that studies if the received time series instances are stationary or not. Therefore, the sliding window size is minimized as changes are detected and maximized as the distribution becomes more stable. Results, though preliminary, show that the model prediction is better using flexible sliding windows that adapt according to the detected distribution changes using stationarity compared to learning using a fixed window size that does not incorporate any techniques for detecting and responding to pattern shifts.en_US
dc.languageengen_US
dc.relation.ispartofElectronics (Switzerland)en_US
dc.subject120312 Bancos de datosen_US
dc.subject.otherAdaptive learningen_US
dc.subject.otherData stream miningen_US
dc.subject.otherFinancial time series forecastingen_US
dc.subject.otherIncremental learningen_US
dc.subject.otherOnline learningen_US
dc.titleFinancial Time Series Forecasting: A Data Stream Mining-Based Systemen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/electronics12092039en_US
dc.identifier.scopus2-s2.0-85159183797-
dc.contributor.orcid0000-0002-8126-2939-
dc.contributor.orcid0000-0003-2530-3182-
dc.contributor.orcid0000-0002-9458-0389-
dc.identifier.issue9-
dc.investigacionIngeniería y Arquitecturaen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,644
dc.description.jcr2,6
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,5
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2530-3182-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSánchez Medina, Javier Jesús-
Appears in Collections:Artículos
Adobe PDF (2,22 MB)
Show simple item record

SCOPUSTM   
Citations

8
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

6
checked on Mar 30, 2025

Page view(s)

69
checked on Oct 5, 2024

Download(s)

226
checked on Oct 5, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.