Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/123001
Título: | High resolution mass spectrometry (HRMS) determination of drugs in wastewater and wastewater based epidemiology in Cadiz Bay (Spain) | Autores/as: | Santana Viera, Sergio Lara Martín, Pablo A. González Mazo, Eduardo |
Clasificación UNESCO: | 250811 Calidad de las aguas 330810 Tecnología de aguas residuales 330811 Control de la contaminación del agua 230110 Espectroscopia de masas 320901 Análisis de medicamentos |
Palabras clave: | Wastewater based epidemiology Emerging pollutants High-resolution mass spectrometry Pharmaceuticals |
Fecha de publicación: | 2023 | Proyectos: | FEDER-UCA18-107036 | Publicación seriada: | Journal of Environmental Management | Resumen: | Multi-residue methods for the determination of the myriad of compounds of emerging concern (CECs) entering in the environment are key elements for further assessment on their distribution and fate. Here, we have developed an analytical protocol for the simultaneous analysis of 195 prescription, over-the-counter, and illicit drugs by using a combination of solid phase extraction (SPE) and determination by liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). The method was applied to the analysis of influent sewage samples from 3 wastewater treatment plants (WWTPs) from Cadiz Bay (SW Spain), enabling the quantification of more than 100 pharmaceuticals, 19 of them at average concentrations higher than 1 μg L−1, including caffeine (92 μg L−1), paracetamol (72 μg L−1), and ibuprofen (56 μg L−1), as well as several illicit drugs (e.g., cocaine). Wastewater based epidemiology (WBE) was applied for 27 of the detected compounds to establish their consumption in the sampling area, which has been never attempted before. Caffeine, naproxen, and salicylic acid stood out because of their high consumption (638, 51, and 20 g d−1·1000pop−1, respectively). Regarding illicit drugs, cocaine showed the highest frequency of detection and we estimated an average consumption of 3683 mg d−1·1000pop−1 in Cadiz Bay. The combination of new HRMS methods, capable of discriminating thousands of chemicals, and WBE will allow for a more comprehensive characterization of chemical substances and their consumption in urban environments in the near future. | URI: | http://hdl.handle.net/10553/123001 | ISSN: | 1095-8630 | DOI: | 10.1016/j.jenvman.2023.118000 | Fuente: | Journal of Environmental Management [ISSN 1095-8630], v. 341 (septiembre 2023) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.