Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/123000
Campo DC Valoridioma
dc.contributor.authorJoshi, Rakesh Chandraen_US
dc.contributor.authorSánchez Jiménez, Aliberten_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.date.accessioned2023-05-24T07:04:13Z-
dc.date.available2023-05-24T07:04:13Z-
dc.date.issued2022en_US
dc.identifier.issn0379-3962en_US
dc.identifier.otherDialnet-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/123000-
dc.description.abstractMany countries are struggling for COVID-19 screening resources which arises the need for automatic and low-cost diagnosis systems which can help to diagnose and a large number of tests can be conducted rapidly. Instead of relying on one single method, artificial intelligence and multiple sensors based approaches can be used to decide the prediction of the health condition of the patient. Temperature, oxygen saturation level, chest X-ray and cough sound can be analyzed for the rapid screening. The multi-sensor approach is more reliable and a person can be analyzed in multiple feature dimensions. Deep learning models can be trained with multiple chest x-ray images belonging to different categories to different health conditions i.e. healthy, COVID-19 positive, pneumonia, tuberculosis, etc. The deep learning model will extract the features from the input images and based on that test images will be classified into different categories. Similarly, cough sound and short talk can be trained on a convolutional neural network and after proper training, input voice samples can be differentiated into different categories. Artificial based approaches can help to develop a system to work efficiently at a low costen_US
dc.languageengen_US
dc.publisherEditorial Tecnológica de Costa Rica
dc.relation.ispartofTecnología en Marchaen_US
dc.sourceTecnología en Marcha[ISSN 0379-3962],v. 35 (4), p. 101-109en_US
dc.subject3314 Tecnología médicaen_US
dc.titleArtificial Intelligence based Multi-sensor COVID-19 Screening Frameworken_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.urlhttp://dialnet.unirioja.es/servlet/articulo?codigo=8828179-
dc.description.lastpage109en_US
dc.identifier.issue4-
dc.description.firstpage101en_US
dc.relation.volume35en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.authordialnetidNo ID-
dc.contributor.authordialnetidNo ID-
dc.contributor.authordialnetid1770687-
dc.identifier.dialnet8828179ARTREV-
dc.utils.revisionNoen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.esciESCI
dc.description.miaricds8,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Adobe PDF (1,39 MB)
Vista resumida

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.