Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/122519
Title: Surface and Interior Dynamics of Arctic Seas Using Surface Quasi-Geostrophic Approach
Authors: Umbert, Marta
De-Andrés, Eva
Gonçalves-Araujo, Rafael
Gutiérrez García, Marina
Raj, Roshin
Bertino, Laurent
Gabarró, Carolina
Isern-Fontanet, Jordi
UNESCO Clasification: 251007 Oceanografía física
Keywords: Arctic
Ocean Currents
Ocean Dynamics
Physical Oceanography
Remote Sensing, et al
Issue Date: 2023
Journal: Remote Sensing 
Abstract: This study assesses the capability of Surface Quasi-Geostrophy (SQG) to reconstruct the three-dimensional (3D) dynamics in four critical areas of the Arctic Ocean: the Nordic, Barents, East Siberian, and Beaufort Seas. We first reconstruct the upper ocean dynamics from TOPAZ4 reanalysis of sea surface height (SSH), surface buoyancy (SSB), and surface velocities (SSV) and validate the results with the geostrophic and total TOPAZ4 velocities. The reconstruction of upper ocean dynamics using SSH fields is in high agreement with the geostrophic velocities, with correlation coefficients greater than 0.8 for the upper 400 m. SSH reconstructions outperform surface buoyancy reconstructions, even in places near freshwater inputs from river discharges, melting sea ice, and glaciers. Surface buoyancy fails due to the uncorrelation of SSB and subsurface potential vorticity (PV). Reconstruction from surface currents correlates to the total TOPAZ4 velocities with correlation coefficients greater than 0.6 up to 200 m. In the second part, we apply the SQG approach validated with the reanalysis outputs to satellite-derived sea level anomalies and validate the results against in-situ measurements. Due to lower water column stratification, the SQG approach’s performance is better in fall and winter than in spring and summer. Our results demonstrate that using surface information from SSH or surface velocities, combined with information on the stratification of the water column, it is possible to effectively reconstruct the upper ocean dynamics in the Arctic and Subarctic Seas up to 400 m. Future remote sensing missions in the Arctic Ocean, such as SWOT, Seastar, WaCM, CIMR, and CRISTAL, will produce enhanced SSH and surface velocity observations, allowing SQG schemes to characterize upper ocean 3D mesoscale dynamics up to 400 m with higher resolutions and lower uncertainties.
URI: http://hdl.handle.net/10553/122519
ISSN: 2072-4292
DOI: 10.3390/rs15071722
Source: Remote Sensing [EISSN 2072-4292], v. 15 (7), 1722, (Abril 2023)
Appears in Collections:Artículos
Adobe PDF (45,93 MB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.