Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/121995
DC FieldValueLanguage
dc.contributor.authorMathew, B.en_US
dc.contributor.authorSchmitz, A.en_US
dc.contributor.authorMuñoz Descalzo, Silviaen_US
dc.contributor.authorAnsari, N.en_US
dc.contributor.authorPampaloni, F.en_US
dc.contributor.authorStelzer, E.H.K.en_US
dc.contributor.authorFischer, S.C.en_US
dc.date.accessioned2018-11-25T20:12:39Z-
dc.date.accessioned2023-04-24T12:34:03Z-
dc.date.available2018-11-25T20:12:39Z-
dc.date.available2023-04-24T12:34:03Z-
dc.date.issued2015en_US
dc.identifier.issn1471-2105en_US
dc.identifier.urihttp://hdl.handle.net/10553/121995-
dc.description.abstractBackground: Due to the large amount of data produced by advanced microscopy, automated image analysis is crucial in modern biology. Most applications require reliable cell nuclei segmentation. However, in many biological specimens cell nuclei are densely packed and appear to touch one another in the images. Therefore, a major difficulty of three-dimensional cell nuclei segmentation is the decomposition of cell nuclei that apparently touch each other. Current methods are highly adapted to a certain biological specimen or a specific microscope. They do not ensure similarly accurate segmentation performance, i.e. their robustness for different datasets is not guaranteed. Hence, these methods require elaborate adjustments to each dataset. Results: We present an advanced three-dimensional cell nuclei segmentation algorithm that is accurate and robust. Our approach combines local adaptive pre-processing with decomposition based on Lines-of-Sight (LoS) to separate apparently touching cell nuclei into approximately convex parts. We demonstrate the superior performance of our algorithm using data from different specimens recorded with different microscopes. The three-dimensional images were recorded with confocal and light sheet-based fluorescence microscopes. The specimens are an early mouse embryo and two different cellular spheroids. We compared the segmentation accuracy of our algorithm with ground truth data for the test images and results from state-of-the-art methods. The analysis shows that our method is accurate throughout all test datasets (mean F-measure: 91 %) whereas the other methods each failed for at least one dataset (F-measure ≤ 69 %). Furthermore, nuclei volume measurements are improved for LoS decomposition. The state-of-the-art methods required laborious adjustments of parameter values to achieve these results. Our LoS algorithm did not require parameter value adjustments. The accurate performance was achieved with one fixed set of parameter values. Conclusion: We developed a novel and fully automated three-dimensional cell nuclei segmentation method incorporating LoS decomposition. LoS are easily accessible features that ensure correct splitting of apparently touching cell nuclei independent of their shape, size or intensity. Our method showed superior performance compared to state-of-the-art methods, performing accurately for a variety of test images. Hence, our LoS approach can be readily applied to quantitative evaluation in drug testing, developmental and cell biology.en_US
dc.languageengen_US
dc.relation.ispartofBMC Bioinformaticsen_US
dc.sourceBMC Bioinformatics [ISSN 1471-2105], v. 16, 187, (2015)en_US
dc.subject32 Ciencias médicasen_US
dc.subject320102 Genética clínicaen_US
dc.subject.otherAlgorithmen_US
dc.subject.otherApproximately convex decompositionen_US
dc.subject.otherClusteringen_US
dc.subject.otherImage processingen_US
dc.subject.otherImage segmentationen_US
dc.subject.otherMouse embryoen_US
dc.subject.otherSpheroiden_US
dc.subject.otherThree-dimensional microscopyen_US
dc.titleRobust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decompositionen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/s12859-015-0617-xen_US
dc.identifier.pmid26049713-
dc.identifier.scopus2-s2.0-84938977955-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.authorscopusid56684513800-
dc.contributor.authorscopusid36171970600-
dc.contributor.authorscopusid9235908900-
dc.contributor.authorscopusid15520554600-
dc.contributor.authorscopusid16302045500-
dc.contributor.authorscopusid7006249961-
dc.contributor.authorscopusid57199662673-
dc.identifier.issue1-
dc.relation.volume16en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.identifier.external62311692-
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr1,656-
dc.description.jcr2,435-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Morfología-
crisitem.author.orcid0000-0003-0939-7721-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameMuñoz Descalzo, Silvia-
Appears in Collections:Artículos
Adobe PDF (1,87 MB)
Show simple item record

SCOPUSTM   
Citations

36
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

36
checked on Nov 17, 2024

Page view(s)

90
checked on Nov 16, 2024

Download(s)

36
checked on Nov 16, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.