Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121995
Campo DC Valoridioma
dc.contributor.authorMathew, B.en_US
dc.contributor.authorSchmitz, A.en_US
dc.contributor.authorMuñoz Descalzo, Silviaen_US
dc.contributor.authorAnsari, N.en_US
dc.contributor.authorPampaloni, F.en_US
dc.contributor.authorStelzer, E.H.K.en_US
dc.contributor.authorFischer, S.C.en_US
dc.date.accessioned2018-11-25T20:12:39Z-
dc.date.accessioned2023-04-24T12:34:03Z-
dc.date.available2018-11-25T20:12:39Z-
dc.date.available2023-04-24T12:34:03Z-
dc.date.issued2015en_US
dc.identifier.issn1471-2105en_US
dc.identifier.urihttp://hdl.handle.net/10553/121995-
dc.description.abstractBackground: Due to the large amount of data produced by advanced microscopy, automated image analysis is crucial in modern biology. Most applications require reliable cell nuclei segmentation. However, in many biological specimens cell nuclei are densely packed and appear to touch one another in the images. Therefore, a major difficulty of three-dimensional cell nuclei segmentation is the decomposition of cell nuclei that apparently touch each other. Current methods are highly adapted to a certain biological specimen or a specific microscope. They do not ensure similarly accurate segmentation performance, i.e. their robustness for different datasets is not guaranteed. Hence, these methods require elaborate adjustments to each dataset. Results: We present an advanced three-dimensional cell nuclei segmentation algorithm that is accurate and robust. Our approach combines local adaptive pre-processing with decomposition based on Lines-of-Sight (LoS) to separate apparently touching cell nuclei into approximately convex parts. We demonstrate the superior performance of our algorithm using data from different specimens recorded with different microscopes. The three-dimensional images were recorded with confocal and light sheet-based fluorescence microscopes. The specimens are an early mouse embryo and two different cellular spheroids. We compared the segmentation accuracy of our algorithm with ground truth data for the test images and results from state-of-the-art methods. The analysis shows that our method is accurate throughout all test datasets (mean F-measure: 91 %) whereas the other methods each failed for at least one dataset (F-measure ≤ 69 %). Furthermore, nuclei volume measurements are improved for LoS decomposition. The state-of-the-art methods required laborious adjustments of parameter values to achieve these results. Our LoS algorithm did not require parameter value adjustments. The accurate performance was achieved with one fixed set of parameter values. Conclusion: We developed a novel and fully automated three-dimensional cell nuclei segmentation method incorporating LoS decomposition. LoS are easily accessible features that ensure correct splitting of apparently touching cell nuclei independent of their shape, size or intensity. Our method showed superior performance compared to state-of-the-art methods, performing accurately for a variety of test images. Hence, our LoS approach can be readily applied to quantitative evaluation in drug testing, developmental and cell biology.en_US
dc.languageengen_US
dc.relation.ispartofBMC Bioinformaticsen_US
dc.sourceBMC Bioinformatics [ISSN 1471-2105], v. 16, 187, (2015)en_US
dc.subject32 Ciencias médicasen_US
dc.subject320102 Genética clínicaen_US
dc.subject.otherAlgorithmen_US
dc.subject.otherApproximately convex decompositionen_US
dc.subject.otherClusteringen_US
dc.subject.otherImage processingen_US
dc.subject.otherImage segmentationen_US
dc.subject.otherMouse embryoen_US
dc.subject.otherSpheroiden_US
dc.subject.otherThree-dimensional microscopyen_US
dc.titleRobust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decompositionen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/s12859-015-0617-xen_US
dc.identifier.pmid26049713-
dc.identifier.scopus2-s2.0-84938977955-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.authorscopusid56684513800-
dc.contributor.authorscopusid36171970600-
dc.contributor.authorscopusid9235908900-
dc.contributor.authorscopusid15520554600-
dc.contributor.authorscopusid16302045500-
dc.contributor.authorscopusid7006249961-
dc.contributor.authorscopusid57199662673-
dc.identifier.issue1-
dc.relation.volume16en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.identifier.external62311692-
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr1,656-
dc.description.jcr2,435-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Morfología-
crisitem.author.orcid0000-0003-0939-7721-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameMuñoz Descalzo, Silvia-
Colección:Artículos
Adobe PDF (1,87 MB)
Vista resumida

Citas SCOPUSTM   

36
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

36
actualizado el 17-nov-2024

Visitas

90
actualizado el 16-nov-2024

Descargas

36
actualizado el 16-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.