Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/121741
DC FieldValueLanguage
dc.contributor.authorSingh, Shreyaen_US
dc.contributor.authorBhateja, Vikranten_US
dc.contributor.authorSrivastav, Shivangien_US
dc.contributor.authorPratikshaen_US
dc.contributor.authorLin, Jerry Chun Weien_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.date.accessioned2023-04-10T09:03:18Z-
dc.date.available2023-04-10T09:03:18Z-
dc.date.issued2023en_US
dc.identifier.isbn9789811975233en_US
dc.identifier.issn2190-3018en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/121741-
dc.description.abstractIn recent years, for recognizing sign language, several hardware approaches have been developed using the leap motion controller and Kinect sensors. The sensor-based approaches were costly, and the complexity of designing was high. In machine learning approaches, it was found that less accuracy of prediction occurs as compared to other approaches. As a solution, machine learning-based approaches using image processing evolved as an approach with better prediction and accuracy. In this paper, deep learning approach for sign language recognition (SLR) system has been proposed using AlexNet model. AlexNet is pretrained model, and it is being tested on Indian Sign Language (ISL) Dataset pf Stanford University comprising of alphabets (A–Z) and numerals (0–9). The proposed model has yielded an accuracy of 99.6%.en_US
dc.languageengen_US
dc.relation.ispartofSmart Innovation, Systems and Technologiesen_US
dc.sourceSmart Innovation, Systems and Technologies [ISSN 2190-3018], v. 327, p. 521-529, (Enero 2023)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherAlexneten_US
dc.subject.otherDeep Learningen_US
dc.subject.otherRectified Linear Unit Layeren_US
dc.subject.otherSlren_US
dc.titleAlexNet Model for Sign Language Recognitionen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference10th International Conference on Frontiers of Intelligent Computing: Theory and Applications, FICTA 2022en_US
dc.identifier.doi10.1007/978-981-19-7524-0_46en_US
dc.identifier.scopus85149825767-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58138046700-
dc.contributor.authorscopusid42960891300-
dc.contributor.authorscopusid58138273200-
dc.contributor.authorscopusid58138496300-
dc.contributor.authorscopusid56449520400-
dc.contributor.authorscopusid57219115631-
dc.identifier.eissn2190-3026-
dc.description.lastpage529en_US
dc.description.firstpage521en_US
dc.relation.volume327en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.conferenceidevents150089-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,174
dc.description.sjrqQ4
dc.description.miaricds7,5
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.event.eventsstartdate19-09-2001-
crisitem.event.eventsenddate21-09-2001-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

53
checked on May 18, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.