Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121741
Título: AlexNet Model for Sign Language Recognition
Autores/as: Singh, Shreya
Bhateja, Vikrant
Srivastav, Shivangi
Pratiksha
Lin, Jerry Chun Wei
Travieso-González, Carlos M. 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Alexnet
Deep Learning
Rectified Linear Unit Layer
Slr
Fecha de publicación: 2023
Publicación seriada: Smart Innovation, Systems and Technologies 
Conferencia: 10th International Conference on Frontiers of Intelligent Computing: Theory and Applications, FICTA 2022 
Resumen: In recent years, for recognizing sign language, several hardware approaches have been developed using the leap motion controller and Kinect sensors. The sensor-based approaches were costly, and the complexity of designing was high. In machine learning approaches, it was found that less accuracy of prediction occurs as compared to other approaches. As a solution, machine learning-based approaches using image processing evolved as an approach with better prediction and accuracy. In this paper, deep learning approach for sign language recognition (SLR) system has been proposed using AlexNet model. AlexNet is pretrained model, and it is being tested on Indian Sign Language (ISL) Dataset pf Stanford University comprising of alphabets (A–Z) and numerals (0–9). The proposed model has yielded an accuracy of 99.6%.
URI: http://hdl.handle.net/10553/121741
ISBN: 9789811975233
ISSN: 2190-3018
DOI: 10.1007/978-981-19-7524-0_46
Fuente: Smart Innovation, Systems and Technologies [ISSN 2190-3018], v. 327, p. 521-529, (Enero 2023)
Colección:Actas de congresos
Vista completa

Visitas

53
actualizado el 18-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.