Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/121723
Título: | Hölder-type spaces, singular operators, and fixed point theorems | Autores/as: | Appell, J. Dutkiewicz, A. López Brito, María Belén Reinwand, S. Sadarangani Sadarangani, Kishin Bhagwands |
Clasificación UNESCO: | 120219 Ecuaciones diferenciales ordinarias | Palabras clave: | Initial value problem Caputo derivative Singular integral equation Riemann-Liouville operator Nemytskij operator, et al. |
Fecha de publicación: | 2021 | Publicación seriada: | Fixed Point Theory | Resumen: | In this note, we give a sufficient condition for the existence of Hölder-type solutions to a class of fractional initial value problems involving Caputo derivatives. Since imposing (classical or general) global Lipschitz conditions on the nonlinear operators involved leads to degeneracy phenomena, the main emphasis is put on local Lipschitz conditions or fixed point principles of Schauder and Darbo type. To this end, we study continuity and boundedness conditions for linear Riemann-Liouville operators and nonlinear Nemytskij operators in Hölder spaces of integral type which have much better properties than classical Hölder spaces. | URI: | http://hdl.handle.net/10553/121723 | ISSN: | 1583-5022 | DOI: | 10.24193/fpt-ro.2021.1.03 | Fuente: | Fixed Point Theory, v. 22 (1), p. 31-58, (2021) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.