Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121723
Título: Hölder-type spaces, singular operators, and fixed point theorems
Autores/as: Appell, J.
Dutkiewicz, A.
López Brito, María Belén 
Reinwand, S.
Sadarangani Sadarangani, Kishin Bhagwands 
Clasificación UNESCO: 120219 Ecuaciones diferenciales ordinarias
Palabras clave: Initial value problem
Caputo derivative
Singular integral equation
Riemann-Liouville operator
Nemytskij operator, et al.
Fecha de publicación: 2021
Publicación seriada: Fixed Point Theory 
Resumen: In this note, we give a sufficient condition for the existence of Hölder-type solutions to a class of fractional initial value problems involving Caputo derivatives. Since imposing (classical or general) global Lipschitz conditions on the nonlinear operators involved leads to degeneracy phenomena, the main emphasis is put on local Lipschitz conditions or fixed point principles of Schauder and Darbo type. To this end, we study continuity and boundedness conditions for linear Riemann-Liouville operators and nonlinear Nemytskij operators in Hölder spaces of integral type which have much better properties than classical Hölder spaces.
URI: http://hdl.handle.net/10553/121723
ISSN: 1583-5022
DOI: 10.24193/fpt-ro.2021.1.03
Fuente: Fixed Point Theory, v. 22 (1), p. 31-58, (2021)
Colección:Artículos
Adobe PDF (383,13 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.