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SIMON REINWAND†† AND KISHIN SADARANGANI‡

∗Universität Würzburg, Mathematisches Institut, Campus Hubland Nord,

Emil-Fischer-Str. 30, D-97074 Würzburg, Germany
E-mail: jurgen@dmuw.de

∗∗Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydzia l Matematyki i Informatyki,

ul. Uniwersytetu Poznanskiego 4, PL-61-614 Poznań, Poland
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Abstract. In this note, we give a sufficient condition for the existence of Hölder-type solutions to

a class of fractional initial value problems involving Caputo derivatives. Since imposing (classical
or general) global Lipschitz conditions on the nonlinear operators involved leads to degeneracy phe-

nomena, the main emphasis is put on local Lipschitz conditions or fixed point principles of Schauder

and Darbo type. To this end, we study continuity and boundedness conditions for linear Riemann-
Liouville operators and nonlinear Nemytskij operators in Hölder spaces of integral type which have

much better properties than classical Hölder spaces.
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1. Statement of the problem

There is a vast literature on boundary and initial value problems for nonlinear
second order differential equations. However, replacing a second order differential
operator by operators of fractional order have found less attention, although they
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frequently occur in applications. For example, in the recent paper [10], the following
result has been proved.

Theorem 1.1. Suppose that f : [a, b]×R→ R is continuous and satisfies the Lipschitz
condition

|f(t, u)− f(t, v)| ≤ k|u− v| (a ≤ t ≤ b, u, v ∈ R). (1.1)

If

b− a < Γ(τ)
1
τ τ

τ+1
τ

k
1
τ (τ − 1)

τ−1
τ

,

where Γ denotes the classical Euler Gamma function, then the boundary value problem{
Dτx(t) = f(t, x(t)) (a < t < b),

x(a) = 0, x(b) = B,
(1.2)

where B ∈ R, τ > 0, and Dτ denotes the fractional Riemann-Liouville derivative of
order τ , has a unique continuous solution on [a, b].

Theorem 1.1 is proved by applying the classical Banach-Caccioppoli contraction
mapping principle in the space C[a, b]. Motivated by these results, the authors of [3]
have studied the same question for the general fractional initial value problem{

Dτ
cx(t) = f(t, x(t)) +Dτ−1

c g(t, x(t)) (a < t < b),

x(a) = θ1, x
′(a) = θ2,

(1.3)

where τ > 1, f, g : [a, b]× R→ R are given continuous functions, θ1, θ2 ∈ R, and Dτ
c

denotes the Caputo fractional derivative. Recall that the Caputo fractional derivative
of order τ ≥ 0 of a function x : [a, b]→ R is defined by

Dτ
cx(t) =


x(t) for τ = 0,

1

Γ(n− τ)

∫ t

a

(t− s)n−τ−1x(n)(s) ds for τ > 0

(1.4)

for any t ∈ [a, b], where n = [τ ] + 1 and [τ ] denotes the integer part of τ , provided
that the right side of (1.4) is pointwise defined.

In the existence and uniqueness proof for solutions of (1.3) it is not required that
f and g satisfy the Lipschitz condition (1.1), but the more general condition

|f(t, u)− f(t, v)| ≤ φ(|u− v|),
and similarly for g, where φ is a comparison function in the terminology of the book
[19]. This means that φ : [0,∞) → [0,∞) is increasing and right-continuous and
satisfies φ(u) < u for u > 0. The main tool in [3] is then a generalized contraction
mapping principle due to Matkowski [16] which reads as follows: Let X be a Banach
space, M ⊆ X closed, and T : M →M an operator satisfying

‖Tx− Ty‖ ≤ φ(‖x− y‖) (x, y ∈M) (1.5)

for some comparison function φ. Then T has a unique fixed point in M .

Of course, the choice φ(t) = kt with 0 < k < 1 gives the classical Banach-
Caccioppoli contraction mapping principle. However, allowing more general choices
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for φ considerably enlarges the applicability of this fixed point theorem, as was shown
in [3] by means of examples involving the comparison functions φ(u) = arctanu and
φ(u) = log(1 + u).

Such results, however, have an essential flaw: the space C[a, b] is not very suitable
for fractional integral and differential operators. Instead, such operators are “better
behaved” in Lebesgue, Sobolev, or Hölder spaces. For that reason, we will study
(a variant of) problem (1.3) in Hölder-type spaces involving moduli of continuity in
integral form.

However, if we try to apply Matkowski’s fixed point theorem by imposing the gen-
eralized contraction condition (1.5) on simple nonlinear operators like the Nemytskij
operator

Fx(t) = f(t, x(t)) (1.6)

in Hölder spaces, we encounter another very unpleasant surprise: such a (global)
contraction condition can be satisfied only if the underlying function f : [a, b]×R→ R
is affine. As far as we know, a degeneracy phenomenon of this kind has been proved
first for the classical contraction condition by Matkowski [17] in the space of Lipschitz
continuous functions, by Matkowska [15] in the space of Hölder continuous functions,
and subsequently in many other function spaces. We will show below that the same
degeneracy phenomenon holds for the operator (1.6) in Hölder spaces if we replace a
classical norm-contraction condition by the more general condition (1.5).

A natural idea would therefore be to study the above problem by means of the
Schauder fixed point principle. But here we have another problem: we need then a
compactness criterion for closed bounded sets, and such a criterion is simply unknown
in Hölder spaces.

It turns out that the integral-type Hölder spaces which we will use below for study-
ing the initial value problem (1.3) do not have these drawbacks: nonlinear operators
in general do not degenerate here if we impose a Lipschitz condition in norm, and
compactness criteria can be easily formulated. This illustrates quite well the fact that
using integral-type Hölder spaces, rather than classical Hölder spaces, is a very useful
device.

This paper is organized as follows. In the next section we recall the definition
and some properties of integral-type Hölder spaces. Afterwards we study linear op-
erators (like Riemann-Liouville integral operators) and nonlinear operators (like the
Nemytskij operator (1.6)) in such spaces. Subsequently, we formulate compactness
conditions and study growth conditions which guarantee the existence of invariant
closed balls for the linear and nonlinear operators involved. This leads to existence
theorems for solutions of problem (1.3) which are not just continuous, but have better
properties. In the last section we give an example of such a theorem.

2. Integral-type Hölder spaces

Since we are going to apply fixed point theorems for compact and condensing
operators, we do not need, as in the paper [3], to impose restrictions on the existence
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interval of solutions to (1.3). So in this and the following sections we take without
loss of generality [a, b] = [0, 1].

Recall that the modulus of continuity of a continuous function x : [0, 1] → R is
defined by

ω(x;σ) := sup {|x(s)− x(t)| : 0 ≤ s, t ≤ 1, |s− t| ≤ σ}. (2.1)

Occasionally we will also consider the modulus of continuity of a function f :
[0, 1]× R→ R of two variables which is analogously defined by

ω(f ;σ, µ) := sup {|f(s, u)− f(t, v)| : 0 ≤ s, t ≤ 1, u, v ∈ R,
|s− t| ≤ σ, |u− v| ≤ µ}. (2.2)

Following [2] we put, for 0 < α ≤ 1, α ≤ β <∞, and 0 < s ≤ 1,

jα,β(x; [0, s]) :=

∫ s

0

σ−(β+1)ω(x;σ)β/α dσ, (2.3)

and denote by Jα,β [0, 1] the linear space of all functions x ∈ C[0, 1] for which
jα,β(x; [0, 1]) is finite. Equipped with the norm

‖x‖α,β := |x(0)|+ jα,β(x; [0, 1])α/β , (2.4)

or the equivalent norm

|||x|||α,β := ‖x‖C + jα,β(x; [0, 1])α/β , (2.5)

the set Jα,β [0, 1] is a Banach space. We will use both norms in the sequel. One may
extend this definition to the case β =∞ by putting

jα,∞(x; [0, 1]) := sup {σ−αω(x;σ) : 0 < σ ≤ 1}
and

‖x‖α,∞ := |x(0)|+ jα,∞(x; [0, 1]).

The corresponding set Jα,∞[0, 1] is then nothing else but the classical Hölder space
Cα[0, 1]. We will refer to Jα,β [0, 1] as integral-type Hölder space in what follows.

Let us note that a similar space was introduced and studied by Gusejnov and
Mukhtarov in Chapter 2 of the monograph [12]. Given p ∈ [1,∞) and a function
ϕ : [0, 1]→ R with ∫ 1

0

ϕ(t)p

t1+p
dt =∞,

∫ 1

0

ϕ(t)p

t
dt <∞,

the authors of [12] denote by Iϕ,p[0, 1] the linear space of all continuous functions
satisfying ∫ 1

0

σ−(p+1)ω(x;σ)pϕ(σ)p dσ <∞.

A comparison with (2.3) shows that Iϕ,p[0, 1] = Jα,β [0, 1] if we choose p := β/α
and ϕ(t) := t1−α. The reader who is familiar with interpolation theory may also have
noticed a similarity with the Lorentz space Lp,q (in particular, Lp,p = Lp for q = p).
Indeed, if we replace the modulus of continuity (2.1) of a continuous function x by
the modulus of measurability

ω(x;σ) := meas({s : 0 ≤ s ≤ 1, |x(s)| < 1/σ})
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of a measurable function x, then the condition∫ 1

0

σ−(q+1)ω(x;σ)q/p dσ <∞

is fulfilled if and only if x ∈ Lp,q[0, 1] (see, e.g., [5,14]). As the Lp,q-spaces, the spaces
Jα,β are also “decreasing” in the first index and “increasing” in the second index.
More precisely, the chain of (strict) inclusions

Jα,β [0, 1] ⊂ Jα,∞[0, 1] = Cα[0, 1] ⊂ Jγ,δ[0, 1]

holds for γ < α and δ > β. To see that these inclusions are strict it suffices to note
that the function xθ(t) := tθ belongs to Jα,β [0, 1] for θ > α, and to Cα[0, 1] for θ ≥ α.

3. Riemann-Liouville operators

In our study of the initial value problem we have to consider, apart from the
nonlinear Nemytskij operator (1.6), a weakly singular linear integral operator whose
definition we recall in the following

Definition 3.1. Let τ ≥ 0 and f be a real function defined on the interval [0, 1]. The
Riemann-Liouville fractional integral of order τ of f is defined by

Iτx(t) =


x(t) for τ = 0,

1

Γ(τ)

∫ t

0

(t− s)τ−1x(s) ds for τ > 0

(3.1)

for any t ∈ [0, 1].

The operator Iτ has many interesting properties. For instance, the semigroup
property

(Iσ ◦ Iτ )x(t) = Iσ+τx(t) (σ, τ ≥ 0)

holds for any x ∈ L1[0, 1]. Moreover, for α + τ < 1, the operator Iτ is a bijection
between Cα0 [0, 1] and Cα+τ

0 [0, 1] with inverse

Dτy(t) =


y(t) for τ = 0,

1

Γ(1− τ)

d

dt

∫ t

0

(t− s)−τy(s) ds for 0 < τ < 1− α,
(3.2)

where Cα0 [0, 1] denotes the subspace of all x ∈ Cα[0, 1] satisfying x(0) = 0.

The Caputo derivative occuring in (1.4), however, is not the inverse operator to
(3.1). Instead, the equality

(Iτ ◦Dτ
c )x(t) = x(t)−

n−1∑
k=0

x(k)(0)

k!
tk (3.3)

holds true, whenever x ∈ Cn−1[0, 1] and x(n) exists almost everywhere on [0, 1]. The
equality (3.3) may be regarded as a fractional analogue to the Lagrange mean value
theorem for differentiable functions in the classical sense. For more details about the
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theory and applications of fractional differential equations we refer to the monograph
[13].

Since we will always consider functions over [0, 1] in the sequel, we will drop from
now on the interval in the notation of function spaces. As pointed out in the first sec-
tion, the space C of continuous functions is not very suitable for studying the operator
(3.1). Instead, this operator is much better behaved, e.g., in Lebesgue spaces. For
instance, the classical Hardy-Littlewood theorem states that Iτ maps Lp continuously
into Lp/(1−pτ) provided that 1 < p < 1/τ . Our first and second examples show that
this is false for p = 1 or p = 1/τ .

Example 3.2. Let p = 1, i.e.,

p

1− pτ
=

1

1− τ
.

The positive function

x(t) =


1

t

(
log

1

t

)(τ−3)/2

for 0 < t <
1

2
,

0 for
1

2
≤ t < 1

has the primitive

z(t) :=
2

1− τ

(
log

1

t

)−(1−τ)/2

.

Therefore ∫ 1

0

|x(t)| dt =
2

1− τ
(log 2)−(1−τ)/2 <∞,

i.e., x ∈ L1. On the other hand, the substitution σ := s/t yields

Iτx(t) =

∫ t

0

(
log 1

s

)(τ−3)/2

s(t− s)1−τ ds =
1

t1−τ

∫ 1

0

(
log 1

tσ

)(τ−3)/2

σ(1− σ)1−τ dσ

≥ 2

(1− τ)t1−τ

(
log

1

t

)−(1−τ)/2

,

hence

‖Iτx‖1/(1−τ)
L1/(1−τ)

=

∫ 1/2

0

|Iτx(t)|1/(1−τ) dt ≥ 21/(1−τ)

(1− τ)1−τ

∫ 1/2

0

1

t

(
log

1

t

)−1/2

dt =∞,

i.e., Iτx 6∈ L1/(1−τ) as claimed. �

Example 3.3. Let p = 1/τ , i.e.,

p

1− pτ
=∞.
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Now we “reflect” the function x of the preceding example at 1/2, which means that
we consider the function

x̂(t) = x(1− t) =


1

1− t

(
log

1

1− t

)(τ−3)/2

for 0 < t <
1

2
,

0 for
1

2
≤ t < 1.

Of course, the function x̂ also belongs to L1. Putting

y(t) :=

∫ 1

t

x̂(s)

|t− s|1−τ
ds (0 ≤ t ≤ 1),

an easy calculations shows that y(t) = Iτx(1 − t), so y 6∈ L1/(1−τ), by Example 3.2.
On the other hand, if the operator (3.1) would map L1/τ into L∞, integration by
parts would imply ∫ 1

0

z(t)y(t) dt ≤ ‖x̂‖L1
‖Iτz‖L∞ <∞

for all z ∈ L1/τ , a contradiction. �

Another version of the Hardy-Littlewood theorem states that Iτ also maps the
Lebesgue space Lp continuously into the Hölder space Cα0 provided that

1

τ
< p <∞, 0 < α ≤ τ − 1

p
,

as well as the Hölder space Cα0 continuously into the Hölder space Cα+τ
0 provided

that 0 < α+ τ < 1.

So the boundedness and continuity of the operator (3.1) is well studied in Hölder
spaces. However, if we want to involve nonlinear operators and apply Schauder’s
theorem, we also need some compactness assumption, and compactness criteria in
these spaces are either quite clumsy or simply unknown, see Section 6 below. That
is the reason why we study the operators (3.1) and (1.6) in the integral-type Hölder
spaces Jα,β .

We start by proving a sufficient acting and boundedness condition for the Riemann-
Liouville operator (3.1) in the space Jα,β . It turns out that, under this condition, the
operator (3.1) is also bounded in the norm (2.5). Since

|Iτx(t)| ≤ ‖x‖C
Γ(τ)

∣∣∣∣∫ t

0

(t− s)τ−1 ds

∣∣∣∣ ≤ ‖x‖C
Γ(τ + 1)

, (3.4)

the first term in the norm (2.5) does not provide any difficulty. It is the second term
which requires a careful analysis.

Lemma 3.4. Let 0 < τ < 1, 0 < α < τ , and β > α. Then the estimate

ω(Iτx;σ) ≤ ω(x;σ) + στ‖x‖C
Γ(τ + 1)

(0 ≤ σ ≤ 1) (3.5)

holds for x ∈ Jα,β and Iτ given by (3.1).
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Proof. For 0 ≤ s, t ≤ 1, the change of variables σ := su (resp. σ := tu) yields

Γ(τ) [Iτx(s)− Iτx(t)] =

∫ s

0

(s− σ)τ−1x(σ) dσ −
∫ t

0

(t− σ)τ−1x(σ) dσ

=

∫ 1

0

(s− su)τ−1x(su)s du−
∫ s

0

(t− tu)τ−1x(tu)t du

=

∫ 1

0

[sτx(su))− tτx(tu)] (1− u)τ−1 du.

Now, for s, t, u ∈ [0, 1] with |s− t| ≤ σ we have

|sτx(su)− tτx(tu)| ≤ |sτx(su)− sτx(tu)|+ |sτx(tu)− tτx(tu)|

≤ sτ |x(su)− x(tu)|+ |sτ − tτ | |x(tu)| ≤ ω(x; s) + στ‖x‖C .
Consequently,

|Iτx(s)− Iτx(t)| ≤ ω(x;σ) + στ‖x‖C
τΓ(τ)

,

and (3.5) follows by taking the supremum over |s− t| ≤ σ. �

From Lemma 3.4 we immediately deduce the following acting and boundedness
theorem which we will use several times below.

Theorem 3.5. Given α, β, and τ as in Lemma 3.4, the operator Iτ maps Jα,β into
itself and is bounded in the norm (2.5).

Proof. The estimate (3.5) shows that

ω(Iτx;σ)β/α ≤ c1
[
ω(x;σ)β/α + στβ/α‖x‖β/αC

]
(0 ≤ σ ≤ 1)

with

c1 :=
21−α/β

Γ(τ + 1)
,

where we have used the fact that β > α. From this we conclude that

jα,β(Iτx; [0, 1])α/β =

(∫ 1

0

σ−(β+1)ω(Iτx;σ)β/α dσ

)α/β

≤ cα/β1

(∫ 1

0

σ−(β+1)ω(x;σ)β/α dσ + ‖x‖β/αC

∫ 1

0

σ−(β+1)+τβ/α dσ

)α/β
≤ c2jα,β(x; [0, 1])α/β + c2‖x‖C ,

where

c2 := c
α/β
1

(∫ 1

0

σ−(β+1)+τβ/α dσ

)α/β
=

(
c1α

β(τ − α)

)α/β
.

Combining this with the estimate (3.4) in the norm ‖ · ‖C we obtain

|||Iτx|||α,β = ‖x‖C + jα,β(x; [0, 1])α/β

≤ cα/β1 jα,β(x; [0, 1])α/β + (c2 + τ−1)‖x‖C ≤ c3|||x|||α,β
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with
c3 := max {cα/β1 , c2 + τ−1}, (3.6)

which proves the claim. �

4. Nemytskij operators

After analyzing the linear operator (3.1), let us now briefly recall the properties
of the nonlinear operator (1.6) in Lebesgue and Hölder spaces. It is well-known
that, whenever the Nemytskij operator F generated by a Carathéodory function f :
[0, 1] × R → R maps the space Lp into itself, it is automatically continuous and
bounded. So F behaves in Lp in rather the same way as in the space C of continuous
functions. However, this operator is never compact in Lp, except for the trivial case
when it is constant (which means that f = f(t)).

In the Hölder space Cα, the behavior of the operator (1.6) is quite pathological.
The condition F (Cα) ⊆ Cα does not imply the continuity or boundedness of F in the
norm of Cα, see [6,7] for counterexamples. Even more surprising is the fact that F may
satisfy the condition F (Cα) ⊆ Cα when the underlying function f is discontinuous
(and so F (C) 6⊆ C), see [8]. In the autonomous case when the function f = f(u) does
not depend on t, however, the condition F (Cα) ⊆ Cα implies the boundedness of F
in norm, but F may still be discontinuous in norm [4,7].

In contrast to the strange behavior of the Nemytskij operator F in the classical
Hölder space Cα, we show now that F has more natural properties in the integral-type
Hölder spaces Jα,β . So let f : [0, 1] × R → R be continuous, and denote for r > 0,
similarly as in (2.2), by

ωr(f ;σ, µ) := sup {|f(s, u)− f(t, v)| : 0 ≤ s, t ≤ 1, |u|, |v| ≤ r,
|s− t| ≤ σ, |u− v| ≤ µ} (4.1)

the modulus of continuity of f on the rectangle [0, 1] × [−r, r] for r > 0. In the
following theorem we give a sufficient condition under which the Nemytskij operator
(1.6) maps the space Jα,β [0, 1] into itself and is bounded in the norm (2.5), and so
also in the norm (2.4). To this end, we denote for r > 0 by

c0,r := max
{
|f(t, u)| : 0 ≤ t ≤ 1, |u| ≤ r

}
(4.2)

the norm of f in the space of continuous functions f : [0, 1]× [−r, r]→ R. Moreover,
we write

Br(Jα,β) := {x ∈ Jα,β : |||x|||α,β ≤ r}
for the closed ball of radius r > 0 in the space Jα,β with norm (2.5).

Theorem 4.1. Let r > 0, br > 0, ar ∈ L1, 0 < α < 1, and β > α. Suppose that the
function f : [0, 1]× R→ R satisfies the estimate

ωr(f ;σ, µ)β/α ≤ ar(σ)σβ+1 + brµ
β/α (4.3)

for σ, µ ≥ 0. Then F maps the ball Br(Jα,β) into the ball BR(Jα,β), where

R := c0,r +
(
‖ar‖L1

+ brr
β/α
)α/β

. (4.4)
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Proof. From

ar(σ)σβ+1 ≥ ωr(f ;σ, 0) ≥ 0 (σ ≥ 0)

it follows that ar(σ) ≥ 0 for all σ ∈ [0, 1]. Moreover, f is uniformly continuous on
[0, 1]× [−r, r], because

lim
δ→0+

ωr(f ; δ, δ) = lim inf
δ→0+

ωr(f ; δ, δ) ≤ lim inf
δ→0+

(
ar(δ)δ

β+1 + brδ
β/α
)

= 0,

where we have used the monotonicity of ωr(f ; ·, ·) and the fact that ar ∈ L1. The
estimate

jα,β(Fx; [0, 1]) =

∫ 1

0

σ−β−1ω(Fx;σ)β/α dσ

≤
∫ 1

0

σ−β−1ωr
(
f ;σ, ω(x;σ)

)β/α
dσ

≤
∫ 1

0

σ−β−1
(
ar(σ)σβ+1 + brω(x;σ)β/α

)
dσ

=

∫ 1

0

ar(σ) dσ + br

∫ 1

0

σ−1−βω(x;σ)β/α dσ = ‖ar‖L1
+ brjα,β(x; [0, 1])

(4.5)

holds for our choice of α and β. Moreover, the continuity of f implies that c0,r <∞,
see (4.2), and so we may take R as in (4.4) and obtain

|||Fx|||α,β = ||Fx||C + jα,β(Fx; [0, 1])α/β ≤ R

as claimed. �

A particularly important class of nonlinearities f which satisfies (4.3) for every
r > 0 is given by functions which are uniformly Lipschitz continuous with respect to
both variables. We state this as

Example 4.2. Let r > 0, and suppose that f : [0, 1] × [−r, r] → R satisfies the
following two conditions.

(a) There is some c1,r > 0 such that

|f(s, u)− f(t, u)| ≤ c1,r|s− t| (4.6)

for all s, t ∈ [0, 1] and u ∈ [−r, r].
(b) There is some c2,r > 0 such that

|f(s, u)− f(s, v)| ≤ c2,r|u− v| (4.7)

for all s ∈ [0, 1] and u, v ∈ [−r, r].
For s, t ∈ [0, 1] and u, v ∈ [−r, r] we then have

|f(s, u)− f(t, v)| ≤ |f(s, u)− f(t, u)|+ |f(t, u)− f(t, v)| ≤ c1,r|s− t|+ c2,r|u− v|.

Taking the supremum over |s− t| ≤ σ and |u− v| ≤ µ yields

ωr(f ;σ, µ) ≤ c1,rσ + c2,rµ.
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So for 0 < α < 1 and β > α we obtain

ωr(f ;σ, µ)β/α ≤ 2β/α−1
(
c
β/α
1,r σ

β/α + c
β/α
2,r µ

β/α
)

= ar(σ)σβ+1 + brµ
β/α

with

ar(σ) := 2β/α−1c
β/α
1,r σ

β/α−β−1, br := 2β/α−1c
β/α
2,r ,

which is precisely (4.3). According to Theorem 4.1, the operator F maps the ball
Br(Jα,β) into the ball BR(Jα,β), where the relation between R and r is given by

R = c0,r + 21−α/β
(
c
β/α
1,r

α

β(1− α)
+ c

β/α
2,r r

β/α

)α/β
. (4.8)

We conclude that, for functions satisfying (a) and (b) for each r > 0, the operator
F : Jα,β → Jα,β is bounded on every ball. �

Now we come to the problem of finding sufficient conditions for the continuity of
the operator F in Jα,β . This turns out to be more difficult than proving boundedness.
First we need two technical lemmas.

Lemma 4.3. Let r > 0 and 0 ≤ θ ≤ 1, and suppose that f : [0, 1] × [−r, r] → R
satisfies (a) and (b) of Example 4.2. Then there exists a constant Cθ,r > 0 such that

|f(s, u)− f(s, v)− f(t, u) + f(t, v)| ≤ Cθ,r|s− t|θ|u− v|1−θ

for all s, t ∈ [0, 1] and u, v ∈ [−r, r].

Proof. From (a) of Example 4.2 we obtain

|f(s, u)− f(s, v)− f(t, u) + f(t, v)|

≤ |f(s, u)− f(t, u)|+ |f(s, v)− f(t, v)| ≤ 2c1,r|s− t|,

and from (b) we get

|f(s, u)− f(s, v)− f(t, u) + f(t, v)|

≤ |f(s, u)− f(s, v)|+ |f(t, u)− f(t, v)| ≤ 2c2,r|u− v|.

Raising the first inequality to the power θ and the second inequality to the power
1− θ, and multiplying the resulting inequalities we end up with

|f(s, u)− f(s, v)− f(t, u) + f(t, v)| ≤ 2cθ1,rc
1−θ
2,r |s− t|θ|u− v|1−θ.

So choosing Cθ,r := 2cθ1,rc
1−θ
2,r proves the claim. �

Lemma 4.4. Let r > 0, and suppose that f : [0, 1]×[−r, r]→ R satisfies the following
two conditions.

(a) The function f(t, ·) is differentiable for each t ∈ [0, 1], and

|∂2f(t, u)− ∂2f(t, v)| ≤ Ar|u− v| (4.9)

for some constant Ar > 0 and each u, v ∈ [−r, r].
(b) The norm ‖∂2f(·, 0)‖C is finite.



42 J. APPELL, A. DUTKIEWICZ, B. LÓPEZ, S. REINWAND AND K. SADARANGANI

Then there exists a constant Br > 0 such that

|f(t, u1)− f(t, v1)− f(t, u2) + f(t, v2)|

≤ Ar
(
|u1 − u2|+ |v1 − v2|

)(
|u1 − v1|+ |u2 − v2|

)
+Br|u1 − v1 − u2 + v2|

(4.10)

for all t ∈ [0, 1] and u1, u2, v1, v2 ∈ [−r, r].

Proof. For t ∈ [0, 1] and u ∈ [−r, r] we deduce from (a) and (b) that

|∂2f(t, u)| ≤ |∂2f(t, u)− ∂2f(t, 0)|+ |∂2f(t, 0)|

≤ Ar|u|+ ‖∂2f(·, 0)‖C ≤ Arr + ‖∂2f(·, 0)‖C =: Br <∞.

Similarly as in the proof of [1, Lemma 5.48] one may then show that (4.10) holds for
u1, u2, v1, v2 ∈ [−r, r], which proves the assertion. �

Observe that condition (b) of Lemma 4.4 is trivially satisfied if f has a continu-
ous partial derivative ∂2f(·, ·). However, condition (a) is an additional requirement,
namely Lipschitz continuity of ∂2f(t, ·), uniformly with respect to t.

Now we come to a first continuity condition for the operator F in the space Jα,β .
The following Theorem 4.5 shows even more.

Theorem 4.5. Let 0 < α < θ < 1, β > α, and r > 0, and suppose that f : [0, 1]×R→
R satisfies condition (a) of Example 4.2 and conditions (a) and (b) of Lemma 4.4 on
[0, 1] × [−r, r]. Then F maps the ball Br(Jα,β) into the ball BR(Jα,β), with R given
by (4.8), and is locally Hölder continuous on this ball with exponent 1− θ, where the
Hölder constant of F depends on the constants Ar and Br from Lemma 4.4, as well
as on the constant Cθ,r from Lemma 4.3.

Proof. We use again the norm (2.5). Fix x, y ∈ Jα,β with

|||x− y|||α,β ≤ 1, |||x|||α,β , |||y|||α,β ≤ r;

in particular, ‖x‖C , ‖y‖C ≤ r. As was shown in Lemma 4.4 we have

|∂2f(s, u)| ≤ Br (s ∈ [0, 1], u ∈ [−r, r]).

From the Mean Value Theorem it then follows that

|f(s, u)− f(s, v)| ≤ Br|u− v| (s ∈ [0, 1], u, v ∈ [−r, r]),

so condition (b) of Example 4.2 is also satisfied with c2,r := Br. Applying Lemma 4.3
and Lemma 4.4 to s, t ∈ [0, 1] and u1 := x(s), v1 := y(s), u2 := x(t), and v2 := y(t)
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we get

|f(s, x(s))− f(s, y(s))− f(t, x(t)) + f(t, y(t))|

= |f(s, u1)− f(s, v1)− f(t, u2) + f(t, v2)|

≤ |f(s, u1)− f(s, v1)− f(s, u2) + f(s, v2)|

+ |f(s, u2)− f(s, v2)− f(t, u2) + f(t, v2)|

≤ Ar
(
|u1 − u2|+ |v1 − v2|

)(
|u1 − v1|+ |u2 − v2|

)
+Br|u1 − v1 − u2 + v2|+ Cθ,r|s− t|θ|u2 − v2|1−θ,

where Ar, Br, and Cθ,r are the constants from Lemma 4.3 and Lemma 4.4 which
depend only on r and θ. Taking the supremum over all s, t ∈ [0, 1] with |s − t| ≤ σ
yields

ω(Fx−Fy;σ) ≤ 2Ar
[
ω(x;σ) + ω(y;σ)

]
‖x−y‖C +Brω(x− y;σ) + Cθ,rσ

θ‖x− y‖1−θC

≤ Dθ,r|||x− y|||1−θα,β

[
ω(x;σ) + ω(y;σ) + σθ

]
+Brω(x− y;σ),

where Dθ,r := max{2Ar, Cθ,r} and we have used θ > 0 and |||x− y|||α,β ≤ 1. By our
assumption β > α we conclude that

ω(Fx−Fy;σ)β/α ≤ 4β/α−1
[
D
β/α
θ,r |||x− y|||

(1−θ)β/α
α,β

(
ω(x;σ)β/α + ω(y;σ)β/α + σθβ/α

)
+ Bβ/αr ω(x− y;σ)β/α

]
.

Consequently, using α < θ, θ > 0, and once more |||x − y|||α,β ≤ 1 we obtain the
estimate

jα,β(Fx− Fy; [0, 1])α/β =

(∫ 1

0

σ−(β+1)ω(Fx− Fy;σ)β/α dσ

)α/β
≤ 41−α/β

[
Dθ,r|||x− y|||1−θα,β

(
jα,β(x; [0, 1])α/β + jα,β(y; [0, 1])α/β + γ

α/β
θ

)
+Brjα,β(x− y; [0, 1])α/β

]
≤ 41−α/β

[
Dθ,r|||x− y|||1−θα,β

(
|||x|||α,β + |||y|||α,β + γ

α/β
θ

)
+Br|||x− y|||α,β

]
≤ 41−α/β |||x− y|||1−θα,β

[
Dθ,r

(
|||x|||α,β + |||y|||α,β + γ

α/β
θ

)
+Br

]
≤ 41−α/β |||x− y|||1−θα,β

[
Dθ,r

(
2r + γ

α/β
θ

)
+Br

]
with

γθ :=

∫ 1

0

σ−β−1σθβ/α dσ =
α

β(θ − α)
.
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It remains to estimate the first term in the norm (2.5) of Fx−Fy, i.e., ‖Fx−Fy‖C .
Taking u1 = u2 = v1 = u and v2 = v in Lemma 4.4 gives

|f(t, u)− f(t, v)| ≤ Ar|u− v|2 +Br|u− v| (u, v ∈ [−r, r], t ∈ [0, 1]).

So for u = x(t) and v = y(t) we obtain

‖Fx− Fy‖C = max
0≤t≤1

|f(t, x(t))− f(t, y(t))|

≤ ‖x− y‖C
(
Ar‖x− y‖C +Br

)
≤ |||x− y|||1−θα,β (2rAr +Br),

where we again used our hypotheses θ > 0 and |||x − y|||α,β ≤ 1. Summarizing we
obtain

|||Fx− Fy|||α,β ≤ Lr|||x− y|||1−θα,β

with

Lr := (2rAr +Br) + 41−α/β
[
Dθ,r

(
2r + γ

α/β
θ

)
+Br

]
,

and this is exactly our claim. �

Theorem 4.5 gives a first answer to the question, when the operator F is continuous
in Jα,β . However, we can do better. In the follows we will prove that we can drop
the Lipschitz continuity of the partial derivative ∂2f(·, ·) with respect to the second
variable and replace it by ordinary continuity of ∂2f(·, ·). This will require some
approximation procedure which is given in the following

Lemma 4.6. Let f : [0, 1]× [−r, r]→ R be a function which satisfies (a) of Example
4.2 and has a continuous partial derivative ∂2f(·, ·) everywhere in [0, 1] × [−r, r].
Then there exists a sequence (fn)n of functions fn : [0, 1]×R→ R with the following
properties.

(a) |fn(s, u)− fn(t, u)| ≤ c1,r|s− t| for all s, t ∈ [0, 1], u ∈ [−r, r] and n ∈ N, where
c1,r is the constant of Lemma 4.3.

(b) lim
n→∞

sup
{
|fn(s, u)− f(s, u)| : s ∈ [0, 1], u ∈ [−r, r]

}
= 0 for each u ∈ [−r, r].

(c) |∂2fn(s, u)− ∂2fn(s, v)| ≤ Ln,r|u− v| for all s ∈ [0, 1], u, v ∈ [−r, r] and n ∈ N
and constants Ln,r > 0.

(d) lim
n→∞

sup
{
|∂2fn(s, u)− ∂2f(s, u)| : s ∈ [0, 1], u ∈ [−r, r]

}
= 0.

Before we turn to the quite cumbersome proof of Lemma 4.6, let us make some
comments on the statements for the sequence (fn)n. Assertion (a) says that each
individual fn is Lipschitz continuous with respect to the first variable, uniformly
with respect to the second variable. This is precisely condition (a) of Example 4.2.
Assertion (b) says that (fn)n converges uniformly to f with respect to both variables.
Assertion (c) says that the partial derivative with respect to the second variable of
each individual fn satisfies a uniform Lipschitz condition according to Lemma 4.4
(a). Finally, assertion (d) says that the sequence of partial derivatives with respect
to the second variable of fn converges to that of f uniformly in both variables. In
particular, since ∂2f(·, ·) is supposed to be continuous, and hence bounded on the
rectangle [0, 1]× [−r, r], each ∂2fn(·, ·) must be bounded there as well. Consequently,
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each fn also fulfills part (b) of Lemma 4.4, and hence also all requirements of Theorem
4.5.

Proof of Lemma 4.6. For the functions fn we take the Bernstein Polynomials

fn(s, u) :=
1

(2r)n

n∑
k=0

(
n
k

)
f

(
s,

(2k − n)r

n

)
(u+ r)k(r−u)n−k (s ∈ [0, 1], u ∈ R).

Then (a) is obvious. For (b) fix ε > 0. From the hypothesis it follows easily that
f is continuous on [0, 1] × [−r, r]; in particular, f is bounded by some M > 0, say.
Moreover, it is also uniformly continuous, and we can pick δ > 0 such that

|f(s, u)− f(s, v)| ≤ ε/2
whenever u, v ∈ [−r, r] satisfy |u− v| ≤ δ. Then we choose N ∈ N so large that

N ≥ 4Mr2

εδ2
.

Now, using the shortcut ϕk(u) := (u+ r)k(r − u)n−k we get

|fn(s, u)− f(s, u)| ≤ 1

(2r)n

n∑
k=0

(
n
k

) ∣∣∣∣f (s, (2k − n)r

n

)
− f(s, u)

∣∣∣∣ϕk(u)

=
1

(2r)n

{∑
k∈A

+
∑
k∈B

}(
n
k

) ∣∣∣∣f (s, (2k − n)r

n

)
− f(s, u)

∣∣∣∣ϕk(u),

where
A := {k ∈ {0, . . . , n} : |2kr − n(r + u)| ≤ nδ}

and
B := {k ∈ {0, . . . , n} : |2kr − n(r + u)| > nδ}.

For the sum over A we have |ξk − u| ≤ δ, since ξk lies between (2k − n)r/n and u.
Therefore, ∣∣∣∣f (s, (2k − n)r

n

)
− f(s, u)

∣∣∣∣ ≤ ε

2
,

hence
1

(2r)n

∑
k∈A

(
n
k

) ∣∣∣∣f (s, (2k − n)r

n

)
− f(s, u)

∣∣∣∣ϕk(u) ≤ ε

2
.

On the other hand, for the sum over B we have

δ2n2

(2r)n

∑
k∈B

(
n
k

) ∣∣∣∣f (s, (2k − n)r

n

)
− f(s, u)

∣∣∣∣ϕk(u)

≤ 2M

(2r)n

∑
k∈B

(
n
k

)
ϕk(u)

(
2kr − n(u+ r)

)2
= 2Mn(r2 − u2) ≤ 2Mr2n,

hence

1

(2r)n

∑
k∈B

(
n
k

) ∣∣∣∣f (s, (2k − n)r

n

)
− f(s, u)

∣∣∣∣ϕk(u) ≤ 2Mr2

δ2n
≤ ε

2
,
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provided n ≥ N . Combining these estimates we finally obtain

|fn(s, u)− f(s, u)| ≤ ε (n ≥ N, s ∈ [0, 1], |u| ≤ r),

and this proves (b).

To prove (c), we still introduce the shortcut

ϕk,n(u) := (r + u)k−1(r − u)n−k−1
(
2kr − n(r + u)

)2
and get after some straightforward calculations

∂2fn(s, u) =
1

(2r)nn

n∑
k=0

(
n
k

)
f

(
s,

(2k − n)r

n

)
ϕk,n(u).

In particular,

|∂2fn(s, u)− ∂2fn(s, v)| ≤ 1

(2r)nn

n∑
k=0

(
n
k

) ∣∣∣∣f (s, (2k − n)r

n

)∣∣∣∣ |ϕk,n(u)− ϕk,n(v)|.

Since each ϕk,n is (being a polynomial) Lipschitz continuous on [−r, r], we find con-
stants Lk,n,r > 0 such that

|ϕk,n(u)− ϕk,n(v)| ≤ Lk,n,r|u− v| (u, v ∈ [−r, r]).

Again, f is bounded on [0, 1]× [−r, r] by some M > 0, say. Letting

L′n,r := max{Lk,n,r : 0 ≤ k ≤ n}

we obtain

|∂2fn(s, u)− ∂2fn(s, v)| ≤ M

(2r)nn
|u− v|

n∑
k=0

(
n
k

)
Lk,n,r ≤

ML′n,r
rnn

|u− v|,

and so (c) follows with Ln,r := ML′n,r/nr
n.

The proof for (d) is almost the same as the one for (b). Again, fix ε > 0. Since
∂2f(·, ·) is continuous on the compact set [0, 1]× [−r, r], it is bounded by some M > 0,
say. Moreover, it is also uniformly continuous, and we can pick δ > 0 such that

|∂2f(s, u)− ∂2f(s, v)| ≤ ε

2
(u, v ∈ [−r, r], |u− v| ≤ δ).

Then choose N ∈ N so large that

N ≥ 12Mr2

εδ2
.

Writing ϕk(u) := (u+ r)k−1(r − u)n−k−1, we have

∂2fn(s, u) =
1

(2r)n

n∑
k=0

(
n
k

)[
f

(
s,

(2k − n)r

n

)
− f(s, u)

]
ϕk(u)

(
2kr − n(u+ r)

)
.
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Applying the Mean Value Theorem we find some ξk between (2k− n)r/n and u such
that

f

(
s,

(2k − n)r

n

)
− f(s, u) = ∂2f(s, ξk)

(
(2k − n)r

n
− u
)

=
1

n
∂2f(s, ξk)

(
2kr − n(r + u)

)
.

Consequently,

∂2fn(s, u) =
1

(2r)nn

n∑
k=0

(
n
k

)
∂2f (s, ξk)

(
2kr − n(r + u)

)2
ϕk(u).

So we obtain

|∂2fn(s, u)− ∂2f(s, u)|

≤ 1

(2r)nn

n∑
k=0

(
n
k

) ∣∣∂2f(s, ξk)− ∂2f(s, u)
∣∣ϕk(u)

(
2kr − n(u+ r)

)2
=

1

(2r)nn

{∑
k∈A

+
∑
k∈B

}(
n
k

) ∣∣∂2f(s, ξk)− ∂2f(s, u)
∣∣ϕk(u)

(
2kr − n(u+ r)

)2
,

where A and B are the same index sets as in the proof of (b). For the sum over A we
have |ξk − u| ≤ δ, since ξk lies between (2k − n)r/n and u. Therefore,

|∂2f(s, ξk)− ∂2f(s, u)| ≤ ε

2
,

hence

1

(2r)nn

∑
k∈A

(
n
k

) ∣∣∂2f(s, ξk)− ∂2f(s, u)
∣∣ϕk(u)

(
2kr − n(u+ r)

)2 ≤ ε

2
.

Similarly, for the sum over B we have

δ2n2

(2r)nn

∑
k∈B

(
n
k

) ∣∣∂2f(s, ξk)− ∂2f(s, u)
∣∣ϕk(u)

(
2kr − n(u+ r)

)2
≤ 2M

(2r)nn

∑
k∈B

(
n
k

)
ϕk(u)

(
2kr − n(u+ r)

)4
= 2M

(
(3n− 2)r2 − 3(n− 2)u2

)
≤ 6Mr2n,

hence

1

(2r)nn

∑
k∈B

(
n
k

) ∣∣∂2f(s, ξk)− ∂2f(s, u)
∣∣ϕk(u)

(
2kr − n(u+ r)

)2 ≤ 6Mr2

δ2n
≤ ε

2
,

provided n ≥ N . So we obtain in rather the same way as in (b)

|∂2fn(s, u)− ∂2f(s, u)| ≤ ε (n ≥ N, s ∈ [0, 1], |u| ≤ r),

and this finally finishes the proof. �
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Building on Lemma 4.6, we are now in a position to give another continuity con-
dition for F which is an improved version of Theorem 4.5.

Theorem 4.7. Suppose that f : [0, 1] × R → R satisfies condition (a) of Example
4.2 and has a continuous partial derivative ∂2f everywhere on [0, 1] × R. Then the
operator F generated by f maps the space Jα,β into itself and is continuous.

Let us again make some comments on our hypotheses. Condition (a) of Example
4.2 says that f is Lipschitz continuous with respect to its first variable, uniformly
with respect to its second variable. We do not need differentiability here. The second
assumption, however, says that, for each s ∈ [0, 1], the function f(s, ·) is differentiable,
and that the function ∂2f(·, ·) is continuous on each rectangle [0, 1]× [−r, r].

Now, the idea of the proof of Theorem 4.7 is simple. We approximate F locally
uniformly by other operators Fn generated by the Bernstein polynomials constructed
in Lemma 4.6. Since each Fn is then continuous on the space Jα,β , by Theorem
4.5, our F must be continuous as well. However, dropping the assumption that ∂2f
satisfies a uniform Lipschitz condition according to Lemma 4.4 (a) may make F no
longer Hölder continuous. Here are the details.

Proof of Theorem 4.7. Fix r > 0. We choose a sequence (fn)n of functions fn :
[0, 1]× [−r, r]→ R as in Lemma 4.6 and put

Sn := sup
{
|fn(s, u)− f(s, u)| : s ∈ [0, 1], u ∈ [−r, r]

}
and

Tn := sup
{
|∂2fn(s, u)− ∂2f(s, u)| : s ∈ [0, 1], u ∈ [−r, r]

}
.

By Lemma 4.6, we know then that

|fn(s, u)− fn(t, u)| ≤ c1,r|s− t| (s, t ∈ [0, 1], u ∈ [−r, r]), (4.11)

where c1,r is the constant occurring in Lemma 4.3,

lim
n→∞

Sn = 0, (4.12)

|∂2fn(s, u)− ∂2fn(s, v)| ≤ Ln,r|u− v| (s ∈ [0, 1], u, v ∈ [−r, r]) (4.13)

for some constants Ln,r > 0, and

lim
n→∞

Tn = 0. (4.14)

As mentioned right after Lemma 4.6, each fn satisfies all requirements of Theorem
4.5, and hence generates an operator Fn which maps the ball Br(Jα,β) into the ball
BR(Jα,β) and is continuous, whereR is given by (4.8). Note that, due to the continuity
of ∂2f(·, ·), the function f particularly fulfills all requirements of Example 4.2, and
thus the operator F itself maps Br(Jα,β) into BR(Jα,β). Since this is true for all
r > 0, the operator F maps Jα,β into itself and is bounded. We now show that the
operator sequence (Fn)n converge uniformly on the ball Br(Jα,β) to F , which then
will make F also continuous on that ball.

To this end, we set gn := fn−f and let Gn be the corresponding Nemytskij operators,
that is, Gnx(t) := gn(t, x(t)). We need to show that the operator sequence (Gn)n
converges uniformly to zero on Br(Jα,β).
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For x ∈ Br(Jα,β) we get from (4.12)

‖Gnx‖C = sup
0≤t≤1

|fn(t, x(t))− f(t, x(t))| ≤ Sn → 0 (n→∞). (4.15)

Now, for s ∈ [0, 1] and u, v ∈ [−r, r] we have

|gn(s, u)− gn(s, v)| ≤ sup {|∂2gn(σ, ξ)||u− v| : σ ∈ [0, 1], ξ ∈ [−r, r]}
≤ Tn|u− v|.

(4.16)

Moreover, similarly as in the proof of Lemma 4.3, we conclude from (4.11) and (4.12)
that, for s, t ∈ [0, 1] and v ∈ [−r, r] we have

|gn(s, v)− gn(t, v)| ≤ |fn(s, v)− fn(t, v)|+ |f(s, v)− f(t, v)| ≤ 2c1,r|s− t| (4.17)

and
|gn(s, v)− gn(t, v)| ≤ |gn(s, v)|+ |gn(t, v)| ≤ 2Sn. (4.18)

Fix θ ∈ (α, 1). By raising (4.17) to the power θ and (4.18) to the power 1 − θ, and
multiplying both inequalities yields

|gn(s, v)− gn(t, v)| ≤ 2cθ1,rS
1−θ
n |s− t|θ. (4.19)

Combining now (4.16) and (4.19) gives

|gn(s, u)− gn(t, v)| ≤ |gn(s, u)− gn(s, v)|+ |gn(s, v)− gn(t, v)|

≤ Tn|u− v|+ 2cθ1,rS
1−θ
n |s− t|θ.

In particular,

ω(Gnx;σ)β/α ≤ 2β/α−1
(
T β/αn ω(x;σ)β/α + 2β/αc

βθ/α
1,r Sβ(1−θ)/α

n σβθ/α
)
,

and so

jα,β(Gnx; [0, 1])α/β ≤ 21−α/β
(
Tnjα,β(x; [0, 1])α/β + 2cθ1,rS

1−θ
n γ

α/β
θ

)
≤ 21−α/β

(
Tnr + 2cθ1,rS

1−θ
n γ

α/β
θ

)
,

where γθ is as in the proof of Theorem 4.5. Finally, adding (4.15) yields

|||Gnx|||α,β ≤ Sn + 21−α/β
(
Tnr + 2cθ1,rS

1−θ
n γ

α/β
θ

)
. (4.20)

Since the right-hand side of (4.20) goes to zero as n→∞ and does no longer depend
on x, the proof is complete. �

It is illuminating to illustrate our results for the special case of separated variables,
i.e., for f(t, u) = g(t)h(u).

Example 4.8. Let f : [0, 1]× R→ R be given by

f(t, u) = g(t)h(u) (t ∈ [0, 1], u ∈ R). (4.21)

Then, according to Example 4.2, the operator F maps Jα,β into itself if g ∈ Lip[0, 1]
and h ∈ Liploc(R). In addition, Theorem 4.5 tells us that F is locally Hölder con-
tinuous if g ∈ Lip[0, 1] and h ∈ C1(R) with h′ ∈ Liploc(R). Finally, Theorem 4.7
guarantees the continuity of F if g ∈ Lip[0, 1] and h ∈ C1(R), even if h′ does not
satisfy a Lipschitz condition. �
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5. Lipschitz continuity

Theorem 4.5 shows that the Nemytskij operator F is, under natural hypotheses
on the generating function f , locally Hölder continuous, where we had to impose the
constraint 1 − θ < 1 − α < 1 on the corresponding Hölder exponent. The question
arises whether or not this is only a technical restriction, or we may choose θ = 0, or
even impose a global Lipschitz condition in the form

‖Fx1 − Fx2‖X ≤ k‖x1 − x2‖X (x1, x2 ∈ X) (5.1)

on the operator F . Here one has to be extremely careful, since this may lead to
degeneracy phenomena. In fact, it was proved in [15] that only Nemytskij operators
F which are generated by affine functions

f(t, u) = A(t)u+B(t) (A,B ∈ X) (5.2)

satisfy (5.1) in the space X = Cα. We show now that the same degeneracy phenom-
enon occurs in Cα if we replace the usual (global) Lipschitz condition (5.1) by the
more general condition

‖Fx1 − Fx2‖X ≤ φ(‖x1 − x2‖X) (x, y ∈ X) (5.3)

which is (1.5) for M = X and T = F .

Proposition 5.1. Suppose that the operator F from (1.6) satisfies a generalized
contraction condition of type (5.3) in the Hölder space X = Cα, i.e.,

‖Fx1 − Fx2‖α,∞ ≤ φ(‖x1 − x2‖α,∞) (x, y ∈ Cα)

for some comparison function φ. Then the function f is affine, i.e., there exist A,B ∈
Cα such that f(t, u) = A(t)u+B(t).

Proof. For 0 < σ < τ < 1 and u1, u2, v1, v2 ∈ R, we define two functions x1, x2 :
[0, 1]→ R by

xi(s) =


ui for 0 ≤ s < σ,

(ui − vi)(s− τ)α

(τ − σ)α
+ vi for σ ≤ s ≤ τ,

vi for τ < s ≤ 1.

Then xi ∈ Cα and

|(x1 − x2)(s)− (x1 − x2)(t)| ≤
(
t− s
τ − σ

)α
(u1 − v1 − u2 + v2)

for σ ≤ s < t ≤ τ , hence

ω(x1 − x2; τ − σ) ≤ |u1 − v1 − u2 + v2|.

Consequently,

‖x1 − x2‖α,∞ = |u1 − u2|+
|u1 − v1 − u2 + v2|

(τ − σ)α
.
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Similarly, we have

‖Fx1 − Fx2‖α,β = |f(0, η)− f(0, 0)|+ |f(τ, u1)− f(τ, u2)− f(σ, v1) + f(σ, v2)|
(τ − σ)α

.

Inserting this into the contraction condition (5.3) yields

|f(0, η)− f(0, 0)|+ |f(τ, u1)− f(τ, u2)− f(σ, v1) + f(σ, v2)|
(τ − σ)α

≤ φ
(
|u1 − u2|+

|u1 − v1 − u2 + v2|
(τ − σ)α

)
.

Now, multiplying both sides of this estimate by (τ −σ)α and letting τ → σ we obtain

|f(σ, u1)− f(σ, u2)− f(σ, v1) + f(σ, v2)| ≤ φ (|u1 − v1 − u2 + v2|) .
Finally, substituting u1 := ξ + η, u2 =: ξ, v1 =: η, and v2 =: 0, we see that the
function t 7→ f(σ, t) − f(σ, 0) is additive and continuous, hence of the form A(t)σ,
where A(t) = f(t, 1). So putting B(t) = f(t, 0) we get the representation (5.2) as
claimed. �

Note that this degeneracy result does not contradict Theorem 4.5, since the func-
tion φ(u) = u1−θ does not have, for θ > 0, the property φ(u) < u of a comparison
function in the sense of [19]. Proposition 5.1 is of course somewhat disappointing:
it shows that we may apply global contraction-type conditions like (5.3) in X = Cα

only if our problem is actually linear! The next example shows, however, that in the
space Jα,β the situation is different.

Example 5.2. Let f : [0, 1] × R → R be of the form (4.21), where g : [0, 1] → R
is Lipschitz continuous with Lipschitz constant Lg, and h(u) := sinu. Taking into
account that Corollary 4.6 also holds for globally Lipschitz functions, and Lh,r =
L′h,r ≡ 1 is independent of r for h(u) = sinu, we conclude that

‖Fx1 − Fx2‖α,β ≤ k‖x1 − x2‖α,β (x1, x2 ∈ Jα,β),

where k depends on Lg and ‖g‖C . �

Example 5.2 shows that there is a sufficiently rich variety of nonlinearities f for
which the corresponding Nemytskij operator (1.6) even satisfies the global condition
(5.1) in the space X = Jα,β . Of course, for some purposes (e.g., for applying the
Banach-Caccioppoli fixed point principle), a local contraction condition

‖Fx1 − Fx2‖X ≤ k(r)‖x1 − x2‖X (x1, x2 ∈ X, ‖x1‖X , ‖x2‖X ≤ r) (5.4)

suffices. In many function spaces, the condition (5.4) is equivalent, at least for the
autonomous Nemytskij operator Fx(t) = f(x(t)) to a local Lipschitz condition for the
derivative f ′ in R, see [1, Theorem 5.51] for the Hölder space X = Cα. Interestingly,
a local Hölder condition like

‖Fx1 − Fx2‖X ≤ k(r)‖x1 − x2‖θX (x1, x2 ∈ X, ‖x1‖X , ‖x2‖X ≤ r) (5.5)

for some θ ∈ (0, 1) is satisfied in X = Jα,β if f ′ is merely continuous, but not
necessarily Lipschitz continuous, as Theorem 4.5 shows. However, this does not suffice
for applying the contraction mapping principle.
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So we may summarize our discussion in the following synoptic table, where we
restrict ourselves to the autonomous case of functions f : R→ R.

In the space (5.1) holds if (5.3) holds if (5.4) holds if (5.5) holds if

X = Cα f(u) = A(t)u f(u) = A(t)u f ′ ∈ Liploc(R) f ′ ∈ C(R)

X = Jα,β f ∈ Lip(R) f ∈ Lip(R) f ∈ Liploc(R) f ′ ∈ C(R)

Our table shows that contraction conditions are much easier to obtain in the
integral-type Hölder space Jα,β than in the classical Hölder space Cα. However,
there is another advantage: In contrast to Cα, compactness criteria are not hard to
obtain in Jα,β . So we may also apply other fixed point principles, like the classical
Schauder theorem for compact operators and, more generally, the Darbo theorem for
condensing operators. We will explain this in the next section.

6. Condensing operators

To apply our abstract results to the initial value problem{
Dτ
cx(t) = f(t, x(t)) (0 < t < 1),

x(0) = θ1, x
′(0) = θ2,

(6.1)

where τ , f : [0, 1]× R→ R, θ1, θ2 and Dτ
c are the same as in problem (1.3), we still

have to impose some topological conditions on the Nemytskij operator F generated
by the right-hand side of (6.1). It is not hard to see that a function x : [0, 1] → R
solves (6.1) if and only if x is a fixed point of the operator

Tx(t) = θ1 + θ2t+ (Iτ ◦ F )x(t), (6.2)

with Iτ given by (3.1) and F by (1.6). In fact, this follows by applying the operator
Iτ to both sides of the equation Dτ

cx = Fx in (6.1) and using the fact that for n = 2
the right-hand side of (3.3) simply becomes x(t)− x(0)− x′(0)t.

The structure of the fixed point operator T in (6.2) shows again that it is of
utmost importance to give conditions under which the operator Iτ maps some space
Jα,β into itself. In fact, if Iτ would map Jα,β into some larger space Jγ,δ with γ < α,
then the Nemytskij operator F should go back from Jγ,β into the smaller space Jα,β .
Unfortunately, this would also lead to a drastic degeneracy of the generating function
f , as was shown in [2].

So solving the initial value problem (1.3) reduces, as usual, to finding a fixed
point of the operator (6.2) in the space Jα,β . To this end, we will use the Darbo-
Sadovskij fixed point principle [9,20] which is closely related to the notions of measures
of noncompactness and condensing operators. Let us briefly recall the necessary
definitions.

Definition 6.1. The Hausdorff measure of noncompactness of a bounded set M in a
Banach space X is defined by

χ(M) := inf {ε > 0 : M admits a finite ε-net in X}.
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A (usually, nonlinear) operator T : D → X (D ⊆ X) is called k-set contraction if
there exists a k > 0 such that

χ(T (M)) ≤ kχ(M) (M ⊆ D bounded). (6.3)

The smallest possible constant k in (6.3) is denoted by χ(T ). In case χ(T ) < 1 the
operator T is called condensing.

The following important fixed point theorem has been proved independently by the
Italian mathematician G. Darbo [9] and the Russian mathematician B.N. Sadovskij
[20].

Theorem 6.2. Let X be a Banach space, M ⊂ X bounded, closed, and convex, and
T : M →M continuous and condensing. Then T has a fixed point in M .

Since every compact operator T is condensing with χ(T ) = 0, and every contrac-
tion is condensing, where χ(T ) is not larger than the minimal Lipschitz constant of
T , Theorem 5.2 bridges the gap between the fixed point theorems of Schauder and
Banach-Caccioppoli.

In order to apply Theorem 6.2 to a problem in a specific function space, one needs
of course bilateral estimates, or even explicit formulas, for the Hausdorff measure
of noncompactness in that space. Usually, this is achieved by introducing a certain
“intrinsic” set function η in X which is equivalent to χ in the sense that

cη(M) ≤ χ(M) ≤ Cη(M) (M ⊆ X bounded) (6.4)

with two constants c, C > 0 independent of M . In particular, a bounded set M ⊂ X
is then precompact if and only if η(M) = 0. In the space X = Jα,β , an estimate of
this type is given in the following

Proposition 6.3. The Hausdorff measure of noncompactness in the space Jα,β is
equivalent to the set function

η(M) := lim sup
s→0

sup
x∈M

jα,β(x; [0, s]), (6.5)

where jα,β(x; [0, s]) is given by (2.3). More precisely, the estimate (6.4) holds in Jα,β
with c = 2−β/α and C = 2β/α. In particular, a subset M ⊂ Jα,β is compact if and
only if it is bounded, closed, and satisfies η(M) = 0.

Proof. First of all, we remark that there is no need to take into account the first
(scalar) term in the norm (2.4), because every bounded set in R is precompact.

Given a bounded set M ⊂ Jα,β and λ > χ(M), let {z1, . . . , zm} be a λ-net for
M in Jα,β , which means that M ⊆ Bλ(z1) ∪ . . . ∪ Bλ(zm), with Br(z) denoting
the closed ball of radius r > 0 around z. Fix x ∈ M , and choose zj such that
jα,β(x− zj) ≤ ‖x− zj‖α,β ≤ λ. Since jα,β(zj) is finite, we find a δ > 0 such that∫ s

0

σ−(β+1)ω(zj ;σ)β/α dσ ≤ ε (j = 1, . . . ,m)

for 0 ≤ s ≤ δ. So from

ω(x;σ)β/α ≤ (ω(x− zj ;σ) + ω(zj ;σ))
β/α ≤ 2β/αω(x− zj ;σ)β/α + 2β/αω(zj ;σ)β/α
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it follows that

jα,β(x; [0, s]) ≤ 2β/αjα,β(x− zj ; [0, s]) + 2β/αjα,β(zj ; [0, s]) ≤ 2β/α(λ+ ε)

for 0 ≤ s ≤ δ, hence η(M) ≤ 2β/αχ(M) which proves one estimate.

To prove the other estimate, let µ > η(M). Given ε > 0, we may find δ > 0 such
that jα,β(x; [0, s]) ≤ µ + ε for 0 ≤ s ≤ δ, uniformly in x ∈ M . Since M is bounded
in Jα,β , M is equicontinuous, hence precompact in C. So there exists a finite ε-net
{z1, . . . , zm} for M in C, where we may assume without loss of generality that all
functions zj , . . . , zm belong to Jα,β .

Fix x ∈M , and choose zj such that ‖x− zj‖C ≤ ε. Now we distinguish two cases:

1st case: δ < s ≤ 1. Then ω(x− zj ; s) ≤ 2‖x− zj‖C ≤ 2ε, and therefore∫ 1

δ

s−(β+1)ω(x− zj ; s)β/α ds ≤ (2ε)β/α
δ−β − 1

β
,

and the last expression may be made arbitrarily small.

2nd case: 0 ≤ s ≤ δ. Then∫ δ

0

s−(β+1)ω(x− zj ; s)β/α ds ≤ 2β/α
∫ δ

0

s−(β+1)ω(x; s)β/α ds

+2β/α
∫ δ

0

s−(β+1)ω(zj ; s)
β/α ds ≤ 2β/α(µ+ 2ε).

We conclude that χ(M) ≤ 2β/αη(M) which proves the other estimate. �

The two-sided estimate for χ(M) in terms of the function (6.5) is of course similar
to the well-known Arzelà-Ascoli compactness criterion which states that a subset
M ⊂ C is compact if and only if it is bounded, closed, and satisfies

lim sup
s→0

sup
x∈M

ω(x; s) = 0.

One could expect that a similar result holds in the Hölder space Cα. However, the
analogous condition

lim sup
s→0

sup
x∈M

s−αω(x; s) = 0

is not satisfied even for a singleton {x0}, as the example x0(t) = tα shows. Some
authors (e.g., [11,18]) claim to give compactness criteria in the Hölder space Cα;
unfortunately, all these criteria are false, since they are either sufficient, but not
necessary, or necessary, but not sufficient. Our Proposition 5.3 above shows that it
is easier to obtain compactness criteria in the integral-type Hölder space Jα,β . More
generally, the following is true.

Theorem 6.4. Under the hypothesis (4.3), the Nemytskij operator (1.6) satisfies the
estimate (6.3) for X = Jα,β and D = Br(Jα,β) with k = 22β/αbr, where br is the
constant appearing in (4.3).
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Proof. Replacing in (4.5) the integration over [0, 1] by the integration over [0, s] with
0 < s < 1 we get

jα,β(Fx; [0, s]) ≤
∫ s

0

ar(σ) dσ + brjα,β(x; [0, s]). (6.6)

Since the integral in (6.6) tends to zero for s → 0+, the claim follows from the
definition of η and Proposition 6.3. �

7. An existence result

Using the results obtained so far for the operators Iτ and F we are now in a
position to prove our existence result for solutions of the problem (6.1) in the Hölder
space of integral type Jα,β . We achieve this by applying Theorem 6.2 to the operator
(6.2), verifying the hypotheses in 4 steps.

1st step: The operator T maps Br(Jα,β) into Jα,β and is bounded on Br(Jα,β). By
Theorem 3.5 and Theorem 4.1, this is true if 0 < τ < 1, 0 < α < τ , β > α, and (4.3)
holds for some ar ∈ L1 and br ≥ 0.

2nd step: The operator T is continuous on Br(Jα,β). Continuity of Iτ is equivalent
to boundedness, while continuity of F follows from (4.6) and (4.9), by Theorem 4.7.

3rd step: The operator T is condensing on Br(Jα,β). Since the term θ1 + θ2t in the
operator (6.2) is finite dimensional, we only have to make sure that (6.3) holds for the
operator Iτ ◦ F on M = Br(Jα,β) with k < 1. Theorem 3.5 and Theorem 6.4 show

that this is true if 22β/αbrc3 < 1, with br given in (4.3) and c3 given in (3.6)

4th step: The operator T maps Br(Jα,β) into itself. This step requires some calcu-
lation. Since the linear function u(t) = t satisfies ω(u;σ) = σ and jα,β(u; [0, 1]) =
α/β(1− α), we have

|||u|||α,β = 1 +

(
α

β(1− α)

)α/β
.

For estimating |||(Iτ ◦ F )x|||α,β we may use Theorem 3.5 and Theorem 4.1.
As a result we get

|||(Iτ ◦ F )x|||α,β ≤ c3|||Fx|||α,β ≤ crR,
where R depends on r and is given by (4.8). So the following existence theorem is
true.

Theorem 7.1. Let 0 < τ < 1, 0 < α < τ , and β > α. Suppose that f : [0, 1]×R→ R
satisfies the hypotheses of Theorem 4.7. Assume that

|θ1|+ |θ2|+ |θ2|
(

α

β(1− α)

)α/β
+ c3c0,r + c3R ≤ r (7.1)

for some r > 0, where c3 is given by (3.6), c0,r by (4.2), and R by (4.4). Then the
problem (6.1) has a solution x ∈ Br(Jα,β).

Of course, the invariance condition (7.1) is not very specific, so the question arises
how to adjust the constants involved to achieve it. If the left-hand side of condition
(7.1) is small enough, this condition will be satisfied for sufficiently large r > 0. Now,
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the only terms in (7.1) which depend on r are c0,r and R (containing c1,r and c2,r).
If the function f(t, ·) has strictly sublinear growth, uniformly in t, i.e.,

lim
|u|→∞

sup
0≤t≤1

|f(t, u)|
|u|

= 0,

then c0,r = o(r) as r →∞, as needed. A similarly condition for ∂1f(t, ·) and ∂1f(t, ·)
will work for c1,r and c2,r. This reasoning, however, restricts very much the applica-
bility of Theorem 7.1. Instead, observe that the terms c0,r and R depend linearly on
r. So we may multiply the function f with some free parameter λ which is so small
that the slope of the right-hand side of (7.1), as an affine function of r > 0, is less
than 1. Here is an example, where the variables t and u of the nonlinearity are not
separated as in (4.21).

Example 7.2. Consider the problem{
Dτ
cx(t) = λ sin(t+ x(t)) (0 < t < 1),

x(0) = θ1, x
′(0) = θ2,

(7.2)

where λ > 0. Here the constants c0,r = c1,r = c2,r = λ are independent of r > 0, and
all condition (4.6), (4.7), (4.9) and (4.10) are satisfied with Ar := λ and Br := λ(r+1).

As we have seen in Example 4.2, the crucial growth estimate (4.3) holds here, using
the shortcut γ := β/α, with

ar(σ) := 2γ−1λγσγ−β−1, br := 2γ−1λγ .

Moreover, the radius (4.8) of the ball BR(Jα,β) becomes

R = λ+ λ(1 + rγ)1/γ ,

which illustrates the linear dependence on r. Finally, the fixed point operator (6.2) is
condensing if

23γ−1λγ+1 < 1.

All these requirements may be achieved if λ > 0 is sufficiently small, and so we get
existence and uniqueness of a solution x ∈ Jα,β for arbitrary initial values θ1 and
θ2. �
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