Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121720
Campo DC Valoridioma
dc.contributor.authorHarjani Saúco, Jackie Jerónimoen_US
dc.contributor.authorLópez Brito, María Belénen_US
dc.contributor.authorSadarangani Sadarangani, Kishin Bhagwandsen_US
dc.date.accessioned2023-03-31T14:44:07Z-
dc.date.available2023-03-31T14:44:07Z-
dc.date.issued2021en_US
dc.identifier.issn1583-5022en_US
dc.identifier.urihttp://hdl.handle.net/10553/121720-
dc.description.abstractIn this paper, by using a mixed monotone operator method we study the existence and uniqueness of positive solutions to the following nonlinear fractional boundary value problem (Formula presented)where (Formula presented) denotes de Caputo fractional derivative, f: [0, 1] × [0, ∞) × [0, ∞) → [0, ∞) and g: [0, 1] × [0, ∞) → [0, ∞) are continuous functions and H is an operator (not necessarily linear) applying C[0, 1] into itself. Moreover, in order to illustrate our results, we present some examples.en_US
dc.languageengen_US
dc.relation.ispartofFixed Point Theoryen_US
dc.sourceFixed Point Theory, v. 22 (1), p. 189-204, (2021)en_US
dc.subject120219 Ecuaciones diferenciales ordinariasen_US
dc.subject.otherFractional boundary value problemen_US
dc.subject.otherPositive solutionen_US
dc.subject.otherMixed monotone operatoren_US
dc.subject.otherFixed pointen_US
dc.titlePositive solutions for a fractional boundary value problem via a mixed monotone operatoren_US
dc.typeArticleen_US
dc.identifier.doi10.24193/fpt-ro.2021.1.13en_US
dc.identifier.scopus2-s2.0-85108425713-
dc.identifier.isiWOS:000627593500013-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.eissn2066-9208-
dc.description.lastpage204en_US
dc.identifier.issue1-
dc.description.firstpage189en_US
dc.relation.volume22en_US
dc.investigacionCienciasen_US
dc.utils.revisionen_US
dc.date.coverdateFebruary, 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,68
dc.description.jcr1,396
dc.description.sjrqQ2
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,8
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-3154-6773-
crisitem.author.orcid0000-0002-1484-0890-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameHarjani Saúco, Jackie Jerónimo-
crisitem.author.fullNameLópez Brito, María Belén-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Visitas

76
actualizado el 12-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.