Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121720
DC FieldValueLanguage
dc.contributor.authorHarjani Saúco, Jackie Jerónimoen_US
dc.contributor.authorLópez Brito, María Belénen_US
dc.contributor.authorSadarangani Sadarangani, Kishin Bhagwandsen_US
dc.date.accessioned2023-03-31T14:44:07Z-
dc.date.available2023-03-31T14:44:07Z-
dc.date.issued2021en_US
dc.identifier.issn1583-5022en_US
dc.identifier.urihttp://hdl.handle.net/10553/121720-
dc.description.abstractIn this paper, by using a mixed monotone operator method we study the existence and uniqueness of positive solutions to the following nonlinear fractional boundary value problem (Formula presented)where (Formula presented) denotes de Caputo fractional derivative, f: [0, 1] × [0, ∞) × [0, ∞) → [0, ∞) and g: [0, 1] × [0, ∞) → [0, ∞) are continuous functions and H is an operator (not necessarily linear) applying C[0, 1] into itself. Moreover, in order to illustrate our results, we present some examples.en_US
dc.languageengen_US
dc.relation.ispartofFixed Point Theoryen_US
dc.sourceFixed Point Theory, v. 22 (1), p. 189-204, (2021)en_US
dc.subject120219 Ecuaciones diferenciales ordinariasen_US
dc.subject.otherFractional boundary value problemen_US
dc.subject.otherPositive solutionen_US
dc.subject.otherMixed monotone operatoren_US
dc.subject.otherFixed pointen_US
dc.titlePositive solutions for a fractional boundary value problem via a mixed monotone operatoren_US
dc.typeArticleen_US
dc.identifier.doi10.24193/fpt-ro.2021.1.13en_US
dc.identifier.scopus2-s2.0-85108425713-
dc.identifier.isiWOS:000627593500013-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.eissn2066-9208-
dc.description.lastpage204en_US
dc.identifier.issue1-
dc.description.firstpage189en_US
dc.relation.volume22en_US
dc.investigacionCienciasen_US
dc.utils.revisionen_US
dc.date.coverdateFebruary, 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,68
dc.description.jcr1,396
dc.description.sjrqQ2
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,8
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-3154-6773-
crisitem.author.orcid0000-0002-1484-0890-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameHarjani Saúco, Jackie Jerónimo-
crisitem.author.fullNameLópez Brito, María Belén-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

1
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

1
checked on Mar 30, 2025

Page view(s)

76
checked on Oct 12, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.