Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/121720
Title: Positive solutions for a fractional boundary value problem via a mixed monotone operator
Authors: Harjani Saúco, Jackie Jerónimo 
López Brito, María Belén 
Sadarangani Sadarangani, Kishin Bhagwands 
UNESCO Clasification: 120219 Ecuaciones diferenciales ordinarias
Keywords: Fractional boundary value problem
Positive solution
Mixed monotone operator
Fixed point
Issue Date: 2021
Journal: Fixed Point Theory 
Abstract: In this paper, by using a mixed monotone operator method we study the existence and uniqueness of positive solutions to the following nonlinear fractional boundary value problem (Formula presented)where (Formula presented) denotes de Caputo fractional derivative, f: [0, 1] × [0, ∞) × [0, ∞) → [0, ∞) and g: [0, 1] × [0, ∞) → [0, ∞) are continuous functions and H is an operator (not necessarily linear) applying C[0, 1] into itself. Moreover, in order to illustrate our results, we present some examples.
URI: http://hdl.handle.net/10553/121720
ISSN: 1583-5022
DOI: 10.24193/fpt-ro.2021.1.13
Source: Fixed Point Theory, v. 22 (1), p. 189-204, (2021)
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

1
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 24, 2024

Page view(s)

76
checked on Oct 12, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.