Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/121618
DC FieldValueLanguage
dc.contributor.authorCalvo, Manuel G.en_US
dc.contributor.authorAvero, P.en_US
dc.contributor.authorFernández Martín, Andrésen_US
dc.contributor.authorRecio, Guillermoen_US
dc.date.accessioned2023-03-28T12:53:46Z-
dc.date.available2023-03-28T12:53:46Z-
dc.date.issued2016en_US
dc.identifier.issn1528-3542en_US
dc.identifier.urihttp://hdl.handle.net/10553/121618-
dc.description.abstractWe investigated the minimum expressive intensity that is required to recognize (above chance) static and dynamic facial expressions of happiness, sadness, anger, disgust, fear, and surprise. To this end, we varied the degree of intensity of emotional expressions unfolding from a neutral face, by means of graphics morphing software. The resulting face stimuli (photographs and short videos) were presented in an expression categorization task for 1 s each, and measures of sensitivity or discrimination (A') were collected to establish thresholds. A number of physical, perceptual, categorical, and affective controls were performed. All six basic emotions were reliably recognized above chance level from low intensities, although recognition thresholds varied for different expressions: 20% of intensity, for happiness; 40%, for sadness, surprise, anger, and disgust; and 50%, for fear. The advantage of happy faces may be due to their greater physical change in facial features (as shown by automated facial expression measurement), also at low levels of intensity, relative to neutral faces. Recognition thresholds and the pattern of confusions across expressions were, nevertheless, equivalent for dynamic and static expressions, although dynamic expressions were recognized more accurately and faster.en_US
dc.languageengen_US
dc.relation.ispartofEmotionen_US
dc.sourceEmotion [ISSN 1528-3542], v. 16 (8), p. 1186–1200, (2016)en_US
dc.subject610604 Análisis experimental de la conductaen_US
dc.subject.otherDynamicen_US
dc.subject.otherEmotionen_US
dc.subject.otherFacial expressionen_US
dc.subject.otherIntensityen_US
dc.subject.otherRecognition thresholdsen_US
dc.titleRecognition thresholds for static and dynamic emotional facesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1037/emo0000192en_US
dc.identifier.pmid27359222-
dc.identifier.scopus2-s2.0-84976500583-
dc.identifier.isiWOS:000389306300010-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage1200en_US
dc.identifier.issue8-
dc.description.firstpage1186en_US
dc.relation.volume16en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.identifier.external48805022-
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr2,397
dc.description.jcr3,251
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.ssciSSCI
dc.description.erihplusERIH PLUS
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Dirección de Marketing, RSC y empresa familiar-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Economía y Dirección de Empresas-
crisitem.author.orcid0000-0002-7638-7489-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameFernández Martín, Andrés-
Appears in Collections:Artículos
Adobe PDF (1,42 MB)
Show simple item record

SCOPUSTM   
Citations

75
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

74
checked on Nov 17, 2024

Page view(s)

71
checked on May 18, 2024

Download(s)

327
checked on May 18, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.