Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/121572
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Sánchez, E | en_US |
dc.contributor.author | Hernández Tejera, Francisco Mario | en_US |
dc.date.accessioned | 2023-03-27T11:25:46Z | - |
dc.date.available | 2023-03-27T11:25:46Z | - |
dc.date.issued | 2000 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/121572 | - |
dc.description.abstract | Tracking moving objects based on a Hausdorff measure approach has become popular for computer vision applications [4, 5, 15, 16]. The main drawback of this approach is its computational complexity. Without any restrictions in the search space, it not to be suitable for real-time applications. In this paper, a new technique is described to reduce the computational cost based on the local search size estimate. The proposed method lets dynamical size fitting of the local search window using the knowledge and measurements provided by Hausdorff matching together with a predictive process. Experimental results with real world image sequences are provided to illustrate the performance and the considerable reduction of computational costs with respect to previous approaches and the results are analysed | en_US |
dc.language | eng | en_US |
dc.subject | 12 Matemáticas | en_US |
dc.subject.other | Hausdorff distance | en_US |
dc.title | Tracking moving people with hausdorff distance-based matching using an adjustable-size search window | en_US |
dc.type | info:eu-repo/semantics/conferenceobject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | V Ibero American Symposium on Pattern Recognition. SIARP'2000. Lisboa | en_US |
dc.identifier.url | https://biblioref.siani.es/es/authors.php?author=27 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0001-9717-8048 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Hernández Tejera, Francisco Mario | - |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.