Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/121440
Título: | Scale Up Production of Nanoparticles: Continuous Supercritical Water Synthesis of Ce-Zn Oxides | Autores/as: | Tighe, Christopher J. Quesada Cabrera, Raúl Gruar, Robert I. Darr, Jawwad A. |
Clasificación UNESCO: | 220201 Conductividad 230321-1 Síntesis de nuevos materiales a partir de compuestos organometálicos |
Palabras clave: | Electrical conductivity Manufacturing Nanomaterials Nanoparticles Oxides |
Fecha de publicación: | 2013 | Publicación seriada: | Industrial & Engineering Chemistry Research | Resumen: | A new continuous supercritical water pilot plant was used for the large-scale production of nanomaterials in the Zn-Ce oxide system. Similar to an existing laboratory continuous process, the pilot plant mixes aqueous solutions of the metal salts at room temperature with a flow of supercritical water (450 C and 24.1 MPa) in a confined jet mixer, resulting in the formation of nanoparticles in a continuous manner. The Zn-Ce oxide system, as synthesized here under identical concentration conditions than those used in our laboratory scale process (but 17.5 times total flow rate), has been used as a model system to identify differences in particle properties due to the physical enlargement of the mixer. The data collected for the nanoparticles from the pilot plant was compared to previous work using a laboratory scale continuous reactor. In the Ce-Zn binary oxide series, it was shown that Zn had an apparent solubility of about 20 mol% in the CeO2 (fluorite) lattice, whereafter a composite of the two phases was obtained, consistent with the high solubility observed in previous studies using a continuous hydrothermal process. Because of the inherent scalability of the continuous process and excellent mixing characteristics of the confined jet mixer, it was found that the pilot plant nanoparticles were almost indistinguishable from those made on the laboratory scale. | URI: | http://hdl.handle.net/10553/121440 | ISSN: | 0888-5885 | DOI: | 10.1021/ie3025642 | Fuente: | Industrial & Engineering Chemistry Research [ISSN 0888-5885], v. 52(16), p. 5522-5528 |
Colección: | Artículos |
Citas SCOPUSTM
87
actualizado el 29-dic-2024
Citas de WEB OF SCIENCETM
Citations
80
actualizado el 29-dic-2024
Visitas
29
actualizado el 06-abr-2024
Descargas
43
actualizado el 06-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.