Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/121364
Campo DC Valoridioma
dc.contributor.authorSalgueiro, Luisen_US
dc.contributor.authorMarcello Ruiz, Francisco Javieren_US
dc.contributor.authorVilaplana, Verónicaen_US
dc.date.accessioned2023-03-20T09:31:05Z-
dc.date.available2023-03-20T09:31:05Z-
dc.date.issued2022en_US
dc.identifier.issn2072-4292en_US
dc.identifier.urihttp://hdl.handle.net/10553/121364-
dc.description.abstractThe production of highly accurate land cover maps is one of the primary challenges in remote sensing, which depends on the spatial resolution of the input images. Sometimes, high-resolution imagery is not available or is too expensive to cover large areas or to perform multitemporal analysis. In this context, we propose a multi-task network to take advantage of the freely available Sentinel-2 imagery to produce a super-resolution image, with a scaling factor of 5, and the corresponding high-resolution land cover map. Our proposal, named SEG-ESRGAN, consists of two branches: the super-resolution branch, that produces Sentinel-2 multispectral images at 2 m resolution, and an encoder–decoder architecture for the semantic segmentation branch, that generates the enhanced land cover map. From the super-resolution branch, several skip connections are retrieved and concatenated with features from the different stages of the encoder part of the segmentation branch, promoting the flow of meaningful information to boost the accuracy in the segmentation task. Our model is trained with a multi-loss approach using a novel dataset to train and test the super-resolution stage, which is developed from Sentinel-2 and WorldView-2 image pairs. In addition, we generated a dataset with ground-truth labels for the segmentation task. To assess the super-resolution improvement, the PSNR, SSIM, ERGAS, and SAM metrics were considered, while to measure the classification performance, we used the IoU, confusion matrix and the F1-score. Experimental results demonstrate that the SEG-ESRGAN model outperforms different full segmentation and dual network models (U-Net, DeepLabV3+, HRNet and Dual_DeepLab), allowing the generation of high-resolution land cover maps in challenging scenarios using Sentinel-2 10 m bands.en_US
dc.languageengen_US
dc.relationProcesado Avanzado de Datos de Teledetección Para la Monitorizacióny Gestión Sostenible de Recursos Marinosy Terrestres en Ecosistemas Vulnerables.en_US
dc.relation.ispartofRemote Sensingen_US
dc.sourceRemote Sensing [ISSN 2072-4292], v. 14 (22), 5862, (Noviembre 2022)en_US
dc.subject.otherMulti-task networken_US
dc.subject.otherSuper-resolutionen_US
dc.subject.otherSemantic segmentationen_US
dc.subject.otherSentinel-2en_US
dc.subject.otherWorldView-2en_US
dc.titleSEG-ESRGAN: A Multi-Task Network for Super-Resolution and Semantic Segmentation of Remote Sensing Imagesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/rs14225862en_US
dc.identifier.scopus2-s2.0-85142757845-
dc.identifier.isiWOS:000887822800001-
dc.contributor.orcid0000-0003-4048-8330-
dc.contributor.orcid0000-0002-9646-1017-
dc.contributor.orcid0000-0001-6924-9961-
dc.identifier.issue22-
dc.relation.volume14en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.notasThis article belongs to the Special Issue Remote Sensing Image Super Resolutionen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,136
dc.description.jcr5,0
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,6
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorMarcello Ruiz, Francisco Javier-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
Colección:Artículos
Adobe PDF (19,56 MB)
Vista resumida

Citas SCOPUSTM   

9
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

8
actualizado el 17-nov-2024

Visitas

56
actualizado el 16-jun-2024

Descargas

21
actualizado el 16-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.