Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/121281
DC FieldValueLanguage
dc.contributor.authorGomila, Ainaen_US
dc.contributor.authorShaw, Evelynen_US
dc.contributor.authorCarratalà, Jordien_US
dc.contributor.authorLeibovici, Leonarden_US
dc.contributor.authorTebé, Cristianen_US
dc.contributor.authorWiegand, Irithen_US
dc.contributor.authorVallejo Torres, Lauraen_US
dc.contributor.authorVigo, Joan M.en_US
dc.contributor.authorMorris, Stephenen_US
dc.contributor.authorStoddart, Margareten_US
dc.contributor.authorGrier, Sallyen_US
dc.contributor.authorVank, Christianeen_US
dc.contributor.authorCuperus, Nienkeen_US
dc.contributor.authorVan Den Heuvel, Leonarden_US
dc.contributor.authorEliakim-Raz, Noaen_US
dc.contributor.authorVuong, Cuongen_US
dc.contributor.authorMacGowan, Alasdairen_US
dc.contributor.authorAddy, Ibironkeen_US
dc.contributor.authorPujol, Miquelen_US
dc.date.accessioned2023-03-16T13:21:21Z-
dc.date.available2023-03-16T13:21:21Z-
dc.date.issued2018en_US
dc.identifier.issn2047-2994en_US
dc.identifier.urihttp://hdl.handle.net/10553/121281-
dc.description.abstractBackground: Patients with complicated urinary tract infections (cUTIs) frequently receive broad-spectrum antibiotics. We aimed to determine the prevalence and predictive factors of multidrug-resistant gram-negative bacteria in patients with cUTI. Methods: This is a multicenter, retrospective cohort study in south and eastern Europe, Turkey and Israel including consecutive patients with cUTIs hospitalised between January 2013 and December 2014. Multidrug-resistance was defined as non-susceptibility to at least one agent in three or more antimicrobial categories. A mixed-effects logistic regression model was used to determine predictive factors of multidrug-resistant gram-negative bacteria cUTI. Results: From 948 patients and 1074 microbiological isolates, Escherichia coli was the most frequent microorganism (559/1074), showing a 14.5% multidrug-resistance rate. Klebsiella pneumoniae was second (168/1074) and exhibited the highest multidrug-resistance rate (54.2%), followed by Pseudomonas aeruginosa (97/1074) with a 38.1% multidrug-resistance rate. Predictors of multidrug-resistant gram-negative bacteria were male gender (odds ratio [OR], 1.66; 95% confidence interval [CI], 1.20-2.29), acquisition of cUTI in a medical care facility (OR, 2.59; 95%CI, 1.80-3.71), presence of indwelling urinary catheter (OR, 1.44; 95%CI, 0.99-2.10), having had urinary tract infection within the previous year (OR, 1.89; 95%CI, 1.28-2.79) and antibiotic treatment within the previous 30 days (OR, 1.68; 95%CI, 1.13-2.50). Conclusions: The current high rate of multidrug-resistant gram-negative bacteria infections among hospitalised patients with cUTIs in the studied area is alarming. Our predictive model could be useful to avoid inappropriate antibiotic treatment and implement antibiotic stewardship policies that enhance the use of carbapenem-sparing regimens in patients at low risk of multidrug-resistance.en_US
dc.languageengen_US
dc.relation.ispartofAntimicrobial Resistance and Infection Controlen_US
dc.sourceAntimicrobial Resistance and Infection Control [ISSN 2047-2994], v. 7, 111, (2018)en_US
dc.subject32 Ciencias médicasen_US
dc.subject320505 Enfermedades infecciosasen_US
dc.subject.otherComplicated urinary tract infectionen_US
dc.subject.otherGram-negative bacteriaen_US
dc.subject.otherMultidrug-resistanceen_US
dc.subject.otherPredictive model of multidrug-resistance gram-negative bacteriaen_US
dc.titlePredictive factors for multidrug-resistant gram-negative bacteria among hospitalised patients with complicated urinary tract infections 11 Medical and Health Sciences 1108 Medical Microbiologyen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/s13756-018-0401-6en_US
dc.identifier.pmid30220999-
dc.identifier.scopus2-s2.0-85053349816-
dc.identifier.isiWOS:000444509100001-
dc.contributor.orcid0000-0001-6979-9269-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue1-
dc.relation.volume7en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr1,681
dc.description.jcr3,224
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Economía de la salud y políticas públicas-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0001-5833-6066-
crisitem.author.parentorgDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.fullNameVallejo Torres, Laura-
Appears in Collections:Artículos
Adobe PDF (1,34 MB)
Show simple item record

SCOPUSTM   
Citations

33
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

33
checked on Nov 24, 2024

Page view(s)

60
checked on Jul 27, 2024

Download(s)

29
checked on Jul 27, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.