Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/121020
Título: | Efficient Oral Priming of Tenebrio molitor Larvae Using Heat-Inactivated Microorganisms | Autores/as: | Gonzalez-Acosta, S Baca-Gonzalez, V Asensio-Calavia, P Otazo-Perez, A Lopez, MR Morales De La Nuez, Antonio José de la Lastra, JMP |
Clasificación UNESCO: | 310905 Microbiología | Palabras clave: | Immune priming Antimicrobial peptides Invertebrate immunity Mealworms In vitro antimicrobial assay, et al. |
Fecha de publicación: | 2022 | Publicación seriada: | Vaccines | Resumen: | Microbial resistance is a global health problem that will increase over time. Advances in insect antimicrobial peptides (AMPs) offer a powerful new approach to combat antimicrobial resistance. Invertebrates represent a rich group of animals for the discovery of new antimicrobial agents due to their high diversity and the presence of adaptive immunity or “immune priming”. Here, we report a priming approach for Tenebrio molitor that simulates natural infection via the oral route. This oral administration has the advantage of minimizing the stress caused by conventional priming techniques and could be a viable method for mealworm immunity studies. When using inactivated microorganisms for oral priming, our results showed an increased survival of T. molitor larvae after exposure to various pathogens. This finding was consistent with the induction of antimicrobial activity in the hemolymph of primed larvae. Interestingly, the hemolymph of larvae orally primed with Escherichia coli showed constitutive activity against Staphylococcus aureus and heterologous activity for other Gram-negative bacteria, such as Salmonella enterica. The priming of T. molitor is generally performed via injection of the microorganism. To our knowledge, this is the first report describing the oral administration of heat-inactivated microorganisms for priming mealworms. This technique has the advantage of reducing the stress that occurs with the conventional methods for priming vertebrates. | URI: | http://hdl.handle.net/10553/121020 | ISSN: | 2076-393X | DOI: | 10.3390/vaccines10081296 | Fuente: | Vaccines [ISSN 2076-393X], v. 10 (8) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.