Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/121016
DC FieldValueLanguage
dc.contributor.authorGolpour, Imanen_US
dc.contributor.authorKaveh, Mohammaden_US
dc.contributor.authorBlanco Marigorta, Ana Maríaen_US
dc.contributor.authorMarcos, José Danielen_US
dc.contributor.authorGuiné, Raquel P. F.en_US
dc.contributor.authorChayjan, Reza Amirien_US
dc.contributor.authorKhalife, Esmailen_US
dc.contributor.authorKarami, Hameden_US
dc.date.accessioned2023-03-09T14:02:04Z-
dc.date.available2023-03-09T14:02:04Z-
dc.date.issued2022en_US
dc.identifier.issn2071-1050en_US
dc.identifier.urihttp://hdl.handle.net/10553/121016-
dc.description.abstractThe present investigation aimed to perform an optimisation process of the thermodynamic characteristics for terebinth fruit drying under different drying conditions in a fluidised bed-infrared (FBI) dryer using response surface methodology (RSM) based on a central composite design (CCD) approach. The experiments were conducted at three levels of drying air temperature (40, 55, and 70 °C), three levels of drying air velocity (0.93, 1.765, and 2.60 m/s), and three levels of infrared power (500, 1000, and 1500 W). Energy and exergy assessments of the thermodynamic parameters were performed based on the afirst and second laws of thermodynamics. Minimum energy utilisation, energy utilisation ratio, and exergy loss rate, and maximum exergy efficiency, improvement potential rate, and sustainability index were selected as the criteria in the optimisation process. The considered surfaces were evaluated at 20 experimental points. The experimental results were evaluated using a second-order polynomial model where an ANOVA test was applied to identify model ability and optimal operating drying conditions. The results of the ANOVA test showed that all of the operating variables had a highly significant effect on the corresponding responses. At the optimal drying conditions of 40 °C drying air temperature, 2.60 m/s air velocity, 633.54 W infrared power, and desirability of 0.670, the optimised values of energy utilisation, energy utilisation ratio, exergy efficiency, exergy loss rate, improvement potential rate, and sustainability index were 0.036 kJ/s, 0.029, 86.63%, 0.029 kJ/s, 1.79 kJ/s, and 7.36, respectively. The models predicted for all of the responses had R2-values ranging between 0.9254 and 0.9928, which showed that they had good ability to predict these responses. Therefore, the results of this research showed that RSM modelling had acceptable success in optimising thermodynamic performance in addition to achieving the best experimental conditions.en_US
dc.languageengen_US
dc.relation.ispartofSustainability (Switzerland)en_US
dc.sourceSustainability (Switzerland) [EISSN 2071-1050],v. 14 (22), p. 15220, (Noviembre 2022)en_US
dc.subject331005 Ingeniería de procesosen_US
dc.subject.otherTerebinthen_US
dc.subject.otherHybrid fluidised bed infrared dryingen_US
dc.subject.otherExergy assessmenten_US
dc.subject.otherOptimisationen_US
dc.subject.otherResponse surface methodology (RSM)en_US
dc.titleMulti-Response Design Optimisation of a Combined Fluidised Bed-Infrared Dryer for Terebinth (Pistacia atlantica L.) Fruit Drying Process Based on Energy and Exergy Assessments by Applying RSM-CCD Modellingen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/su142215220en_US
dc.identifier.scopus2-s2.0-85142702782-
dc.identifier.isiWOS:000887770400001-
dc.contributor.orcid0000-0001-6612-3271-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0003-4635-7235-
dc.contributor.orcid0000-0002-2703-0918-
dc.contributor.orcid0000-0003-0595-6805-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0002-1690-1714-
dc.contributor.orcid0000-0002-0654-6149-
dc.identifier.issue22-
dc.relation.volume14en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.notasThis article belongs to the Collection SDGs in the Age of New Industrial Revolutions—Impacts, Trends, and Issues beyond the COVID-19 Pandemicen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,664
dc.description.jcr3,9
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.ssciSSCI
dc.description.miaricds10,6
dc.description.erihplusERIH PLUS
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.orcid0000-0003-4635-7235-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameBlanco Marigorta, Ana María-
Appears in Collections:Artículos
Adobe PDF (5,76 MB)
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 17, 2024

Page view(s)

38
checked on Apr 13, 2024

Download(s)

33
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.