Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/121012
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Krzywanski, J. | en_US |
dc.contributor.author | Skrobek, D. | en_US |
dc.contributor.author | Zylka, A. | en_US |
dc.contributor.author | Grabowska, K. | en_US |
dc.contributor.author | Kulakowska, A. | en_US |
dc.contributor.author | Sosnowski, M. | en_US |
dc.contributor.author | Nowak, W. | en_US |
dc.contributor.author | Blanco Marigorta, Ana María | en_US |
dc.date.accessioned | 2023-03-09T13:08:38Z | - |
dc.date.available | 2023-03-09T13:08:38Z | - |
dc.date.issued | 2023 | en_US |
dc.identifier.issn | 1359-4311 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/121012 | - |
dc.description.abstract | Since greenhouse gas emissions and freshwater scarcity are the top global risks, looking for new methods to reduce CO2 emissions and increase drinking water production is becoming a significant civilization challenge. One of the promising approaches to addressing these dares has proven to be adsorption cooling and desalination systems powered with low-grade thermal energy, including waste heat of the near ambient temperature. Due to poor heat and mass transfer and the low performance of the existing adsorption chiller with conventional packed beds, the innovative concept of fluidized beds application was elaborated on in the paper. Furthermore, the article introduces a novel approach based on artificial intelligence methods for predicting heat and mass transfer within the adsorption bed of cooling and desalination systems. Silica gel, as the parent adsorption material, and two additives, aluminium and carbon nanotubes, with different shares, are applied in tests. The water vapour uptake and the convective heat transfer coefficient, measured during experiments and predicted by the developed models, are investigated and compared. The data evaluated by models are in good agreement with experimental results. The developed models allow the study of input parameters' effect on the outputs and optimize the operating strategy of the bed. The highest water vapour uptake and the convective heat transfer coefficient, which can be obtained for the considered range of input parameters, are equal to 1.65 g/g and 1212.62 W/m2 K, respectively, and can be achieved only due to the fluidization of the adsorption bed. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Applied Thermal Engineering | en_US |
dc.source | Applied Thermal Engineering [ISSN 1359-4311], v. 225, 120200, (Mayo 2023) | en_US |
dc.subject | 331005 Ingeniería de procesos | en_US |
dc.subject.other | Adsorption cooling-desalination systems | en_US |
dc.subject.other | Artificial Intelligence | en_US |
dc.subject.other | Low-grade heat | en_US |
dc.subject.other | Machine learning | en_US |
dc.subject.other | Poligeneration | en_US |
dc.subject.other | Waste energy | en_US |
dc.title | Heat and mass transfer prediction in fluidized beds of cooling and desalination systems by AI approach | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.applthermaleng.2023.120200 | en_US |
dc.identifier.scopus | 2-s2.0-85148377644 | - |
dc.contributor.orcid | 0000-0002-6364-7894 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.relation.volume | 225 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.description.sjr | 1,488 | |
dc.description.jcr | 6,4 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,9 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR Group for the Research on Renewable Energy Systems | - |
crisitem.author.dept | Departamento de Ingeniería de Procesos | - |
crisitem.author.orcid | 0000-0003-4635-7235 | - |
crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
crisitem.author.fullName | Blanco Marigorta, Ana María | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.