Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/121006
DC FieldValueLanguage
dc.contributor.authorIqbal, Asifen_US
dc.contributor.authorKafizas, Andreasen_US
dc.contributor.authorSotelo-Vazquez, Carlosen_US
dc.contributor.authorWilson, Rachelen_US
dc.contributor.authorLing, Minen_US
dc.contributor.authorTaylor, Alaricen_US
dc.contributor.authorBlackman, Chrisen_US
dc.contributor.authorBevan, Kirken_US
dc.contributor.authorParkin, Ivanen_US
dc.contributor.authorQuesada Cabrera, Raúlen_US
dc.date.accessioned2023-03-09T12:22:51Z-
dc.date.available2023-03-09T12:22:51Z-
dc.date.issued2021en_US
dc.identifier.issn1944-8244en_US
dc.identifier.urihttp://hdl.handle.net/10553/121006-
dc.description.abstractRecent studies have demonstrated the high efficiency through which nanostructured core-shell WO3/TiO2 (WT) heterojunctions can photocatalytically degrade model organic pollutants (stearic acid, QE ≈ 18% @ λ = 365 nm), and as such, has varied potential environmental and antimicrobial applications. The key motivation herein is to connect theoretical calculations of charge transport phenomena, with experimental measures of charge carrier behavior using transient absorption spectroscopy (TAS), to develop a fundamental understanding of how such WT heterojunctions achieve high photocatalytic efficiency (in comparison to standalone WO3 and TiO2 photocatalysts). This work reveals an order of magnitude enhancement in electron and hole recombination lifetimes, respectively located in the TiO2 and WO3 sides, when an optimally designed WT heterojunction photocatalyst operates under UV excitation. This observation is further supported by our computationally captured details of conduction band and valence band processes, identified as (i) dominant electron transfer from WO3 to TiO2 via the diffusion of excess electrons; and (ii) dominant hole transfer from TiO2 to WO3 via thermionic emission over the valence band edge. Simultaneously, our combined theoretical and experimental study offers a time-resolved understanding of what occurs on the micro- to milliseconds (μs-ms) time scale in this archetypical photocatalytic heterojunction. At the microsecond time scale, a portion of the accumulated holes in WO3 contribute to the depopulation of W5+ polaronic states, whereas the remaining accumulated holes in WO3 are separated from adjacent electrons in TiO2 up to 3 ms after photoexcitation. The presence of these exceptionally long-lived photogenerated carriers, dynamically separated by the WT heterojunction, is the origin of the superior photocatalytic efficiency displayed by this system (in the degradation of stearic acid). Consequently, our combined computational and experimental approach delivers a robust understanding of the direction of charge separation along with critical time-resolved insights into the evolution of charge transport phenomena in this model heterojunction photocatalyst.en_US
dc.languageengen_US
dc.relation.ispartofACS Applied Materials & Interfacesen_US
dc.sourceACS Applied Materials & Interfaces [ISSN 1944-8244], v. 13 (8), p. 9781–9793, (2021)en_US
dc.subject221001-1 Estructura y reactividad de catalizadores sólidosen_US
dc.subject221311 Fenómenos de transporteen_US
dc.subject221125 Semiconductoresen_US
dc.subject.otherCharge transporten_US
dc.subject.otherHeterojunction photocatalysten_US
dc.subject.otherMetal oxide semiconductorsen_US
dc.subject.otherWO /TiO 3 2en_US
dc.titleCharge Transport Phenomena in Heterojunction Photocatalysts: The WO3/TiO2 System as an Archetypical Modelen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsami.0c19692en_US
dc.identifier.pmid33595275-
dc.identifier.scopus2-s2.0-85101836997-
dc.contributor.orcid0000-0003-1357-9624-
dc.contributor.orcid0000-0002-2282-4639-
dc.contributor.orcid0000-0003-0949-4548-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0003-3462-5191-
dc.contributor.orcid0000-0001-6494-8309-
dc.contributor.orcid0000-0003-0700-5843-
dc.contributor.orcid0000-0001-9884-1403-
dc.contributor.orcid0000-0002-4072-6610-
dc.contributor.orcid#NODATA#-
dc.description.lastpage9793en_US
dc.identifier.issue8-
dc.description.firstpage9781en_US
dc.relation.volume13en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr2,143
dc.description.jcr10,383
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,6
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUNAT: Fotocatálisis y espectroscopía para aplicaciones medioambientales.-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.orcid0000-0002-6288-9250-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.fullNameQuesada Cabrera, Raúl-
Appears in Collections:Artículos
Adobe PDF (3,71 MB)
Show simple item record

SCOPUSTM   
Citations

28
checked on Dec 8, 2024

WEB OF SCIENCETM
Citations

26
checked on Dec 8, 2024

Page view(s)

31
checked on Mar 16, 2024

Download(s)

17
checked on Mar 16, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.