Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/120766
DC FieldValueLanguage
dc.contributor.authorLa Salvia, Marcoen_US
dc.contributor.authorTorti, Emanueleen_US
dc.contributor.authorGazzoni, Marcoen_US
dc.contributor.authorMarenzi, Elisaen_US
dc.contributor.authorLeón, Raquelen_US
dc.contributor.authorOrtega, Samuelen_US
dc.contributor.authorFabelo, Himaren_US
dc.contributor.authorCallicó, Gustavo M.en_US
dc.contributor.authorLeporati, Francescoen_US
dc.date.accessioned2023-02-28T08:41:20Z-
dc.date.available2023-02-28T08:41:20Z-
dc.date.issued2023en_US
dc.identifier.isbn9781510657489en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/120766-
dc.description.abstractGlioblastoma surgical resection is a problematic mission for neurosurgeons. Tumour complete resection improves patients healing chances and prognosis, whilst excessive resection could lead to neurological deficits. Nevertheless, surgeons' sight hardly traces the tumour's extent and boundaries. Indeed, most surgical processes result in subtotal resections. Histopathological testing might enable complete tumour elimination, though it is not feasible due to the time required for tissue investigation. Several studies reported tumour cells having unique molecular signatures and properties. Hyperspectral imaging (HSI) is an emerging, non-contact, non-ionizing, label-free and minimally invasive optical imaging technique able to extract information concerning the observed tissue at the molecular level. Here, we exploited extensive data augmentation, transfer learning, the U-Net++ and the DeepLab-V3+ architectures to perform the automatic end-toend segmentation of intraoperative glioblastoma hyperspectral images meeting competitive processing times and segmentation results concerning the gold-standard procedure. Based on ground truths provided by the HELICoiD framework, we dramatically improved HSIs processing times, enabling the end-to-end segmentation of glioblastomas targeting the real-time processing to be employed during open craniotomy in surgery, thus improving the gold-standard ML pipeline. We measured competitive inference times concerning the standard CUDA environment offered by MatLab 2020a. The HELICoiD fastest parallel version took 1.68 s to elaborate the most prominent image of the database, whilst our methodology performs segmentation inference in 0.29 ± 0.17 s, hence being real-time compliant concerning the 21 seconds constraint imposed on processing. Furthermore, we evaluated our segmentation results qualitatively and quantitatively regarding the ground truth produced by HELICoiD.en_US
dc.languageengen_US
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.sourceProceedings of SPIE - The International Society for Optical Engineering [ISSN 0277-786X], v. 12338, (Enero 2023)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherGlioblastomaen_US
dc.subject.otherHyperspectral Imagingen_US
dc.subject.otherIntraoperative Computer-Aided Assistanceen_US
dc.titleAI-based segmentation of intraoperative glioblastoma hyperspectral imagesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceHyperspectral Imaging and Applications II 2022en_US
dc.identifier.doi10.1117/12.2646782en_US
dc.identifier.scopus85148011734-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57223922393-
dc.contributor.authorscopusid56091390500-
dc.contributor.authorscopusid58075145000-
dc.contributor.authorscopusid55151473500-
dc.contributor.authorscopusid57212456639-
dc.contributor.authorscopusid57189334144-
dc.contributor.authorscopusid56405568500-
dc.contributor.authorscopusid56006321500-
dc.contributor.authorscopusid55937698500-
dc.identifier.eissn1996-756X-
dc.relation.volume12338en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.conferenceidevents150029-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,152-
dc.description.sjrq--
dc.description.miaricds6,5-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-4287-3200-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameLeón Martín,Sonia Raquel-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Appears in Collections:Actas de congresos
Adobe PDF (395,93 kB)
Show simple item record

Page view(s)

61
checked on Aug 10, 2024

Download(s)

73
checked on Aug 10, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.